Tails of higher-order moments with dominatedly varying summands

被引:6
作者
Leipus, Remigijus [1 ]
Siaulys, Jonas [2 ]
Vareikaite, Ieva [2 ]
机构
[1] Vilnius Univ, Inst Appl Math, Naugarduko Str 24, LT-03225 Vilnius, Lithuania
[2] Vilnius Univ, Inst Math, Naugarduko Str 24, LT-03225 Vilnius, Lithuania
关键词
asymptotic independence; tail-moment; heavy tails; dominatedly varying distribution function; sum of random variables; weighted sum; RANDOMLY WEIGHTED SUMS; DEPENDENT RANDOM-VARIABLES; INDEPENDENT RANDOM-VARIABLES; GOOVAERTS RISK MEASURE; TIME RUIN PROBABILITY; ASYMPTOTICS; MODEL; FINITE; INSURANCE; EXPECTATION;
D O I
10.1007/s10986-019-09444-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let xi(1), . . . , xi(n) be dependent real -valued random variables with dominatedly varying distribution functions. We investigate the asymptotic behavior of the tail-moment E((S-n(xi))(m)1({Sn xi >x})), where m is a nonnegative integer, and S-n(xi) = xi(1) + . . . + xi(n). We consider the dependence structure, similar to pairwise strongly quasiasymptotic independence among the random summands. We also study the case where each summand of S-n(xi) can be expressed as the product of two random variables.
引用
收藏
页码:389 / 407
页数:19
相关论文
共 43 条
[1]  
[Anonymous], 1987, ENCY MATH APPL
[2]   Asymptotics for risk capital allocations based on Conditional Tail Expectation [J].
Asimit, Alexandru V. ;
Furman, Edward ;
Tang, Qihe ;
Vernic, Raluca .
INSURANCE MATHEMATICS & ECONOMICS, 2011, 49 (03) :310-324
[3]   Risk management with expectiles [J].
Bellini, Fabio ;
Di Bernardino, Elena .
EUROPEAN JOURNAL OF FINANCE, 2017, 23 (06) :487-506
[4]   Generalized quantiles as risk measures [J].
Bellini, Fabio ;
Klar, Bernhard ;
Mueller, Alfred ;
Gianin, Emanuela Rosazza .
INSURANCE MATHEMATICS & ECONOMICS, 2014, 54 :41-48
[5]   Ruin with insurance and financial risks following the least risky FGM dependence structure [J].
Chen, Yiqing ;
Liu, Jiajun ;
Liu, Fei .
INSURANCE MATHEMATICS & ECONOMICS, 2015, 62 :98-106
[6]   Sums of Pairwise Quasi-Asymptotically Independent Random Variables with Consistent Variation [J].
Chen, Yiqing ;
Yuen, Kam C. .
STOCHASTIC MODELS, 2009, 25 (01) :76-89
[7]   Randomly weighted sums of dependent random variables with dominated variation [J].
Cheng, Dongya .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 420 (02) :1617-1633
[8]   Randomly weighted sums of dependent subexponential random variables with applications to risk theory [J].
Cheng, Fengyang ;
Cheng, Dongya .
SCANDINAVIAN ACTUARIAL JOURNAL, 2018, (03) :191-202
[9]   SUBEXPONENTIALITY OF THE PRODUCT OF INDEPENDENT RANDOM-VARIABLES [J].
CLINE, DBH ;
SAMORODNITSKY, E .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1994, 49 (01) :75-98
[10]   Randomly stopped sums with exponential-type distributions [J].
Danilenko, Svetlana ;
Markeviciute, Jurgita ;
Siaulys, Jonas .
NONLINEAR ANALYSIS-MODELLING AND CONTROL, 2017, 22 (06) :793-807