Metrics and barycenters for point pattern data

被引:13
|
作者
Mueller, Raoul [1 ]
Schuhmacher, Dominic [1 ]
Mateu, Jorge [2 ]
机构
[1] Univ Gottingen, Inst Math Stochast, D-37077 Gottingen, Germany
[2] Univ Jaume 1, Dept Math, Castellon de La Plana 12071, Spain
关键词
Frechet mean; Frechet median; Network; Optimal transport; Point process; Unbalanced; Wasserstein; OPTIMAL TRANSPORT; ALGORITHMS; REGRESSION; PROTOTYPES; DISTANCE;
D O I
10.1007/s11222-020-09932-y
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We introduce the transport-transform and the relative transport-transform metrics between finite point patterns on a general space, which provide a unified framework for earlier point pattern metrics, in particular the generalized spike time and the normalized and unnormalized optimal subpattern assignment metrics. Our main focus is on barycenters, i.e., minimizers of a q-th-order Frechet functional with respect to these metrics. We present a heuristic algorithm that terminates in a local minimum and is shown to be fast and reliable in a simulation study. The algorithm serves as a general plug-in method that can be applied to point patterns on any state space where an appropriate algorithm for solving the location problem for individual points is available. We present applications to geocoded data of crimes in Euclidean space and on a street network, illustrating that barycenters serve as informative summary statistics. Our work is a first step toward statistical inference in covariate-based models of repeated point pattern observations.
引用
收藏
页码:953 / 972
页数:20
相关论文
共 50 条
  • [31] A new class of metrics for learning on real-valued and structured data
    Ruiyu Yang
    Yuxiang Jiang
    Scott Mathews
    Elizabeth A. Housworth
    Matthew W. Hahn
    Predrag Radivojac
    Data Mining and Knowledge Discovery, 2019, 33 : 995 - 1016
  • [32] ecocomDP: A flexible data design pattern for ecological community survey data
    O'Brien, Margaret
    Smith, Colin A.
    Sokol, Eric R.
    Gries, Corinna
    Lany, Nina
    Record, Sydne
    Castorani, Max C. N.
    ECOLOGICAL INFORMATICS, 2021, 64
  • [33] A New Distance in Pattern Clustering on Longitudinal Data
    Liu, Yi
    Luo, Nian-long
    2014 INTERNATIONAL CONFERENCE ON INFORMATION SCIENCE, ELECTRONICS AND ELECTRICAL ENGINEERING (ISEEE), VOLS 1-3, 2014, : 971 - 975
  • [34] Simultaneous Pattern and Data Hiding in Supervised Learning
    Lin, Pengpeng
    Zhang, Jun
    Wang, Xiwei
    Shindhelm, Art
    2012 IEEE 13TH INTERNATIONAL CONFERENCE ON INFORMATION REUSE AND INTEGRATION (IRI), 2012, : 385 - 392
  • [35] FUSION OF ALS POINT CLOUD DATA WITH HIGH PRECISION SURVEYING DATA
    Wehr, A.
    Duzelovic, H.
    Punz, Ch
    100 YEARS ISPRS ADVANCING REMOTE SENSING SCIENCE, PT 2, 2010, 38 : 639 - 643
  • [36] Robust Nonparametric Data Approximation of Point Sets via Data Reduction
    Durocher, Stephane
    Leblanc, Alexandre
    Morrison, Jason
    Skala, Matthew
    ALGORITHMS AND COMPUTATION, ISAAC 2012, 2012, 7676 : 319 - 331
  • [37] Network Estimation From Point Process Data
    Mark, Benjamin
    Raskutti, Garvesh
    Willett, Rebecca
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2019, 65 (05) : 2953 - 2975
  • [38] Point Cloud Data Conversion into Solid Models via Point-Based Voxelization
    Hinks, Tommy
    Carr, Hamish
    Linh Truong-Hong
    Laefer, Debra F.
    JOURNAL OF SURVEYING ENGINEERING, 2013, 139 (02) : 72 - 83
  • [39] Packetless data transmission through pattern exclusive coding
    Chang, Shih-Yu
    Wu, Hsiao-Chun
    PHYSICAL COMMUNICATION, 2020, 41
  • [40] GLMdenoise improves multivariate pattern analysis of fMRI data
    Charest, Ian
    Kriegeskorte, Nikolaus
    Kay, Kendrick N.
    NEUROIMAGE, 2018, 183 : 606 - 616