Metrics and barycenters for point pattern data

被引:13
|
作者
Mueller, Raoul [1 ]
Schuhmacher, Dominic [1 ]
Mateu, Jorge [2 ]
机构
[1] Univ Gottingen, Inst Math Stochast, D-37077 Gottingen, Germany
[2] Univ Jaume 1, Dept Math, Castellon de La Plana 12071, Spain
关键词
Frechet mean; Frechet median; Network; Optimal transport; Point process; Unbalanced; Wasserstein; OPTIMAL TRANSPORT; ALGORITHMS; REGRESSION; PROTOTYPES; DISTANCE;
D O I
10.1007/s11222-020-09932-y
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We introduce the transport-transform and the relative transport-transform metrics between finite point patterns on a general space, which provide a unified framework for earlier point pattern metrics, in particular the generalized spike time and the normalized and unnormalized optimal subpattern assignment metrics. Our main focus is on barycenters, i.e., minimizers of a q-th-order Frechet functional with respect to these metrics. We present a heuristic algorithm that terminates in a local minimum and is shown to be fast and reliable in a simulation study. The algorithm serves as a general plug-in method that can be applied to point patterns on any state space where an appropriate algorithm for solving the location problem for individual points is available. We present applications to geocoded data of crimes in Euclidean space and on a street network, illustrating that barycenters serve as informative summary statistics. Our work is a first step toward statistical inference in covariate-based models of repeated point pattern observations.
引用
收藏
页码:953 / 972
页数:20
相关论文
共 50 条
  • [1] Metrics and barycenters for point pattern data
    Raoul Müller
    Dominic Schuhmacher
    Jorge Mateu
    Statistics and Computing, 2020, 30 : 953 - 972
  • [2] Discrete Wasserstein barycenters: optimal transport for discrete data
    Anderes, Ethan
    Borgwardt, Steffen
    Miller, Jacob
    MATHEMATICAL METHODS OF OPERATIONS RESEARCH, 2016, 84 (02) : 389 - 409
  • [3] Discrete Wasserstein barycenters: optimal transport for discrete data
    Ethan Anderes
    Steffen Borgwardt
    Jacob Miller
    Mathematical Methods of Operations Research, 2016, 84 : 389 - 409
  • [4] A fixed-point approach to barycenters in Wasserstein space
    Alvarez-Esteban, Pedro C.
    del Barrio, E.
    Cuesta-Albertos, J. A.
    Matran, C.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 441 (02) : 744 - 762
  • [5] Clustering For Point Pattern Data
    Nhat-Quang Tran
    Ba-Ngu Vo
    Dinh Phung
    Ba-Tuong Vo
    2016 23RD INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2016, : 3174 - 3179
  • [6] OSPA Barycenters for Clustering Set-Valued Data
    Baum, Marcus
    Balasingam, Balakumar
    Willett, Peter
    Hanebeck, Uwe D.
    2015 18TH INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION), 2015, : 1375 - 1381
  • [7] Hausdorff and Wasserstein metrics on graphs and other structured data
    Patterson, Evan
    INFORMATION AND INFERENCE-A JOURNAL OF THE IMA, 2021, 10 (04) : 1209 - 1249
  • [8] Stochastic Quasi-Likelihood for Case-Control Point Pattern Data
    Xu, Ganggang
    Waagepetersen, Rasmus
    Guan, Yongtao
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2019, 114 (526) : 631 - 644
  • [9] Model-based learning for point pattern data
    Ba-Ngu Vo
    Nhan Dam
    Dinh Phung
    Quang N. Tran
    Ba-Tuong Vo
    PATTERN RECOGNITION, 2018, 84 : 136 - 151
  • [10] ON METRICS FOR ANALYSIS OF FUNCTIONAL DATA ON GEOMETRIC DOMAINS
    Anbouhi, Soheil
    Mio, Washington
    Okutan, Osman berat
    FOUNDATIONS OF DATA SCIENCE, 2024, : 671 - 704