Perspectives on quantum transduction

被引:214
作者
Lauk, Nikolai [1 ,2 ]
Sinclair, Neil [1 ,2 ,3 ]
Barzanjeh, Shabir [4 ,5 ,6 ]
Covey, Jacob P. [1 ]
Saffman, Mark [7 ]
Spiropulu, Maria [1 ,2 ]
Simon, Christoph [4 ,5 ]
机构
[1] CALTECH, Div Phys Math & Astron, 1200 E Calif Blvd, Pasadena, CA 91125 USA
[2] CALTECH, AQT, 1200 E Calif Blvd, Pasadena, CA 91125 USA
[3] Harvard Univ, John A Paulson Sch Engn & Appl Sci, 29 Oxford St, Cambridge, MA 02138 USA
[4] Univ Calgary, Inst Quantum Sci & Technol, 2500 Univ Dr NW, Calgary, AB T2N 1N4, Canada
[5] Univ Calgary, Dept Phys & Astron, 2500 Univ Dr NW, Calgary, AB T2N 1N4, Canada
[6] IST Austria, A-3400 Klosterneuburg, Austria
[7] Univ Wisconsin, Dept Phys, 1150 Univ Ave, Madison, WI 53706 USA
基金
加拿大自然科学与工程研究理事会; 美国国家科学基金会;
关键词
quantum transduction; microwave photons; optical photons; atomic ensembles; optomechanics; electro-optics; Rydberg states; MICROWAVE; CONVERSION; INFORMATION; RADIATION; WAVES;
D O I
10.1088/2058-9565/ab788a
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Quantum transduction, the process of converting quantum signals from one form of energy to another, is an important area of quantum science and technology. The present perspective article reviews quantum transduction between microwave and optical photons, an area that has recently seen a lot of activity and progress because of its relevance for connecting superconducting quantum processors over long distances, among other applications. Our review covers the leading approaches to achieving such transduction, with an emphasis on those based on atomic ensembles, opto-electro-mechanics, and electro-optics. We briefly discuss relevant metrics from the point of view of different applications, as well as challenges for the future.
引用
收藏
页数:15
相关论文
共 100 条
[1]   Full Coherent Frequency Conversion between Two Propagating Microwave Modes [J].
Abdo, Baleegh ;
Sliwa, Katrina ;
Schackert, Flavius ;
Bergeal, Nicolas ;
Hatridge, Michael ;
Frunzio, Luigi ;
Stone, A. Douglas ;
Devoret, Michel .
PHYSICAL REVIEW LETTERS, 2013, 110 (17)
[2]   Multimode quantum memory based on atomic frequency combs [J].
Afzelius, Mikael ;
Simon, Christoph ;
de Riedmatten, Hugues ;
Gisin, Nicolas .
PHYSICAL REVIEW A, 2009, 79 (05)
[3]  
Andrews RW, 2014, NAT PHYS, V10, P321, DOI [10.1038/NPHYS2911, 10.1038/nphys2911]
[4]   Cavity optomechanics [J].
Aspelmeyer, Markus ;
Kippenberg, Tobias J. ;
Marquardt, Florian .
REVIEWS OF MODERN PHYSICS, 2014, 86 (04) :1391-1452
[5]   Optical detection of radio waves through a nanomechanical transducer [J].
Bagci, T. ;
Simonsen, A. ;
Schmid, S. ;
Villanueva, L. G. ;
Zeuthen, E. ;
Appel, J. ;
Taylor, J. M. ;
Sorensen, A. ;
Usami, K. ;
Schliesser, A. ;
Polzik, E. S. .
NATURE, 2014, 507 (7490) :81-85
[6]  
Balram KC, 2016, NAT PHOTONICS, V10, P346, DOI [10.1038/nphoton.2016.46, 10.1038/NPHOTON.2016.46]
[7]  
Bartholomew J G, 2019, ARXIV191203671
[8]   Stationary entangled radiation from micromechanical motion [J].
Barzanjeh, S. ;
Redchenko, E. S. ;
Peruzzo, M. ;
Wulf, M. ;
Lewis, D. P. ;
Arnold, G. ;
Fink, J. M. .
NATURE, 2019, 570 (7762) :480-+
[9]   Mechanical on-chip microwave circulator [J].
Barzanjeh, S. ;
Wulf, M. ;
Peruzzo, M. ;
Kalaee, M. ;
Dieterle, P. B. ;
Painter, O. ;
Fink, J. M. .
NATURE COMMUNICATIONS, 2017, 8
[10]   Reversible Optical-to-Microwave Quantum Interface [J].
Barzanjeh, Sh ;
Abdi, M. ;
Milburn, G. J. ;
Tombesi, P. ;
Vitali, D. .
PHYSICAL REVIEW LETTERS, 2012, 109 (13)