Critical behavior in lossy source coding

被引:7
作者
Dembo, A [1 ]
Kontoyiannis, I
机构
[1] Stanford Univ, Dept Math, Stanford, CA 94305 USA
[2] Stanford Univ, Dept Stat, Stanford, CA 94305 USA
[3] Brown Univ, Div Appl Math, Providence, RI 02912 USA
关键词
lossy data compression; rate-distortion theory; redundancy;
D O I
10.1109/18.915693
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The following critical phenomenon was recently discovered. When a memoryless source is compressed using a variable-length fixed-distortion code, the fastest convergence rate of the (pointwise) compression ratio to R(D) is either O(rootn) or O(log n), We show it is always O(rootn), except for discrete, uniformly distributed sources.
引用
收藏
页码:1230 / 1236
页数:7
相关论文
共 11 条
[1]  
Ahlfors LV, 1953, COMPLEX ANAL
[2]  
ALGOET PH, 1985, THESIS STANFORD U ST
[3]  
[Anonymous], 2011, APPL MATH
[4]  
Barron A. R., 1985, THESIS STANFORD U ST
[5]  
BERGER T, 1971, RATE DISTORTATION TH
[6]  
Cover T. M., 2005, ELEM INF THEORY, DOI 10.1002/047174882X
[7]  
CSISZAR I, 1981, INFORMATION THEORY C
[8]   SAMPLE CONVERSES IN SOURCE-CODING THEORY [J].
KIEFFER, JC .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1991, 37 (02) :263-268
[9]   Second-order noiseless source coding theorems [J].
Kontoyiannis, I .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1997, 43 (04) :1339-1341
[10]   Pointwise redundancy in lossy data compression and universal lossy data compression [J].
Kontoyiannis, I .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2000, 46 (01) :136-152