3D Point Cloud Object Detection with Multi-View Convolutional Neural Network

被引:0
|
作者
Pang, Guan [1 ]
Neumann, Ulrich [1 ]
机构
[1] Univ Southern Calif, Dept Comp Sci, Los Angeles, CA 90089 USA
关键词
RECOGNITION;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Efficient detection of three dimensional (3D) objects in point clouds is a challenging problem. Performing 3D descriptor matching or 3D scanning-window search with detector are both time-consuming due to the 3-dimensional complexity. One solution is to project 3D point cloud into 2D images and thus transform the 3D detection problem into 2D space, but projection at multiple viewpoints and rotations produce a large amount of 2D detection tasks, which limit the performance and complexity of the 2D detection algorithm choice. We propose to use convolutional neural network (CNN) for the 2D detection task, because it can handle all viewpoints and rotations for the same class of object together, as well as predicting multiple classes of objects with the same network, without the need for individual detector for each object class. We further improve the detection efficiency by concatenating two extra levels of early rejection networks with binary outputs before the multi-class detection network. Experiments show that our method has competitive overall performance with at least one-order of magnitude speedup comparing with latest 3D point cloud detection methods.
引用
收藏
页码:585 / 590
页数:6
相关论文
共 50 条
  • [1] 3D Point Cloud Recognition Based on a Multi-View Convolutional Neural Network
    Zhang, Le
    Sun, Jian
    Zheng, Qiang
    SENSORS, 2018, 18 (11)
  • [2] Multi-view semantic learning network for point cloud based 3D object detection
    Yang, Yongguang
    Chen, Feng
    Wu, Fei
    Zeng, Deliang
    Ji, Yi-mu
    Jing, Xiao-Yuan
    NEUROCOMPUTING, 2020, 397 (397) : 477 - 485
  • [3] An Improved Multi-View Convolutional Neural Network for 3D Object Retrieval
    He, Xinwei
    Bai, Song
    Chu, Jiajia
    Bai, Xiang
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2020, 29 : 7917 - 7930
  • [4] MVPointNet: Multi-View Network for 3D Object Based on Point Cloud
    Zhou, Weiguo
    Jiang, Xin
    Liu, Yun-Hui
    IEEE SENSORS JOURNAL, 2019, 19 (24) : 12145 - 12152
  • [5] PVNet: A Joint Convolutional Network of Point Cloud and Multi-View for 3D Shape Recognition
    You, Haoxuan
    Feng, Yifan
    Ji, Rongrong
    Gao, Yue
    PROCEEDINGS OF THE 2018 ACM MULTIMEDIA CONFERENCE (MM'18), 2018, : 1310 - 1318
  • [6] Drcnn: Dynamic routing convolutional neural network for multi-view 3d object recognition
    Sun, Kai
    Zhang, Jiangshe
    Liu, Junmin
    Yu, Ruixuan
    Song, Zengjie
    IEEE Transactions on Image Processing, 2021, 30 : 868 - 877
  • [7] DRCNN: Dynamic Routing Convolutional Neural Network for Multi-View 3D Object Recognition
    Sun, Kai
    Zhang, Jiangshe
    Liu, Junmin
    Yu, Ruixuan
    Song, Zengjie
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 : 868 - 877
  • [8] 3D object retrieval based on multi-view convolutional neural networks
    Li, Xi-Xi
    Cao, Qun
    Wei, Sha
    MULTIMEDIA TOOLS AND APPLICATIONS, 2017, 76 (19) : 20111 - 20124
  • [9] 3D object retrieval based on multi-view convolutional neural networks
    Xi-Xi Li
    Qun Cao
    Sha Wei
    Multimedia Tools and Applications, 2017, 76 : 20111 - 20124
  • [10] No-Reference 3D Point Cloud Quality Assessment Using Multi-View Projection and Deep Convolutional Neural Network
    Bourbia, Salima
    Karine, Ayoub
    Chetouani, Aladine
    El Hassouni, Mohammed
    Jridi, Maher
    IEEE ACCESS, 2023, 11 : 26759 - 26772