Approximation on anisotropic Besov classes with mixed norms by standard information

被引:20
作者
Fang, GS
Hickernell, FJ
Li, H
机构
[1] IIT, Dept Appl Math, Chicago, IL 60616 USA
[2] Beijing Normal Univ, Dept Math, Beijing 100875, Peoples R China
[3] Hong Kong Baptist Univ, Peking Univ Hong Kong Baptist Univ, Dept Math, Joint Res Inst Appl Math, Kowloon, Hong Kong, Peoples R China
基金
中国国家自然科学基金;
关键词
information-based complexity; exact order; interpolation; optimal recovery;
D O I
10.1016/j.jco.2005.01.001
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This article considers the approximation problem on periodic functions of anisotropic Besov classes with mixed norms using standard information. The asymptotic decay rates of the best algorithms in the worst-case setting are determined. An interpolating algorithm that attains this decay rate is given as well. (c) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:294 / 313
页数:20
相关论文
共 31 条
[1]  
Babenko K.I., 1986, FDN NUMERICAL ANAL
[2]  
CIARLET PG, 1975, STUD MATH, V53, P277
[3]   Besov regularity for elliptic boundary value problems [J].
Dahlke, S ;
DeVore, RA .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1997, 22 (1-2) :1-16
[4]  
Fang GS, 1996, J APPROX THEORY, V85, P115
[5]  
Heinrich S., 1991, Journal of Complexity, V7, P339, DOI 10.1016/0885-064X(91)90024-R
[6]  
HEINRICH S, 1994, LECT NOTES PURE APPL, V150, P123
[7]  
HRISTOVA VH, 1983, CONSTRUCTIVE FUNCTIO, V81, P185
[8]  
IVANOV KG, 1983, PRISCA STUD MATH BUL, V15, P97
[9]   About the best convergences of functions of a given function class [J].
Kolmogoroff, A .
ANNALS OF MATHEMATICS, 1936, 37 :107-110