Higher spin alternating sign matrices

被引:0
作者
Behrend, Roger E. [1 ]
Knight, Vincent A. [1 ]
机构
[1] Cardiff Univ, Sch Math, Cardiff CF24 4AG, Wales
关键词
alternating sign matrix; semimagic square; convex polytope; higher spin vertex model;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We define a higher spin alternating sign matrix to be an integer-entry square matrix in which, for a nonnegative integer r, all complete row and column sums are r, and all partial row and column sums extending from each end of the row or column are nonnegative. Such matrices correspond to configurations of spin r/2 statistical mechanical vertex models with domain-wall boundary conditions. The case r = 1 gives standard alternating sign matrices, while the case in which all matrix entries are nonnegative gives semimagic squares. We show that the higher spin alternating sign matrices of size n are the integer points of the r-th dilate of an integral convex polytope of dimension (n-1)(2) whose vertices are the standard alternating sign matrices of size n. It then follows that, for fixed n, these matrices are enumerated by an Ehrhart polynomial in r.
引用
收藏
页数:38
相关论文
共 67 条
[1]  
Abramson M., 1973, Discrete Mathematics, V6, P1, DOI 10.1016/0012-365X(73)90032-0
[2]   A COMBINATORIAL DISTRIBUTION PROBLEM [J].
ANAND, H ;
DUMIR, VC ;
GUPTA, H .
DUKE MATHEMATICAL JOURNAL, 1966, 33 (04) :757-&
[3]   PLANE PARTITIONS .5. THE TSSCPP CONJECTURE [J].
ANDREWS, GE .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 1994, 66 (01) :28-39
[4]   PLANE PARTITIONS(III) - WEAK MACDONALD CONJECTURE [J].
ANDREWS, GE .
INVENTIONES MATHEMATICAE, 1979, 53 (03) :193-225
[5]  
[Anonymous], 2007, UNDERGRADUATE TEXTS
[6]  
[Anonymous], 2001, ELECTRON J COMB, DOI DOI 10.37236/1595
[7]  
Baxter R J., 1982, EXACTLY SOLVED MODEL
[8]   The number of "magic" squares, cubes, and hypercubes [J].
Beck, M ;
Cohen, M ;
Cuomo, J ;
Gribelyuk, P .
AMERICAN MATHEMATICAL MONTHLY, 2003, 110 (08) :707-717
[9]  
BEHREND RE, ARXIVMATH0701755
[10]  
BEHREND RE, UNPUB DETERMINANT FO