A Systematic Review of Landsat Data for Change Detection Applications: 50 Years of Monitoring the Earth

被引:131
作者
Hemati, MohammadAli [1 ]
Hasanlou, Mahdi [1 ]
Mahdianpari, Masoud [2 ,3 ]
Mohammadimanesh, Fariba [2 ]
机构
[1] Univ Tehran, Sch Surveying & Geospatial Engn, Coll Engn, Tehran 1417466191, Iran
[2] C CORE, 1 Morrissey Rd, St John, NF A1B 3X5, Canada
[3] Mem Univ Newfoundland, Dept Elect & Comp Engn, St John, NF A1C 5S7, Canada
关键词
Landsat; change detection; land cover change; land use; meta-analysis; systematic review; SENSING CHANGE DETECTION; TIME-SERIES; SURFACE REFLECTANCE; FOREST DISTURBANCE; COVER; CLASSIFICATION; RESOLUTION; RECOVERY; SCIENCE; DEFORESTATION;
D O I
10.3390/rs13152869
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
With uninterrupted space-based data collection since 1972, Landsat plays a key role in systematic monitoring of the Earth's surface, enabled by an extensive and free, radiometrically consistent, global archive of imagery. Governments and international organizations rely on Landsat time series for monitoring and deriving a systematic understanding of the dynamics of the Earth's surface at a spatial scale relevant to management, scientific inquiry, and policy development. In this study, we identify trends in Landsat-informed change detection studies by surveying 50 years of published applications, processing, and change detection methods. Specifically, a representative database was created resulting in 490 relevant journal articles derived from the Web of Science and Scopus. From these articles, we provide a review of recent developments, opportunities, and trends in Landsat change detection studies. The impact of the Landsat free and open data policy in 2008 is evident in the literature as a turning point in the number and nature of change detection studies. Based upon the search terms used and articles included, average number of Landsat images used in studies increased from 10 images before 2008 to 100,000 images in 2020. The 2008 opening of the Landsat archive resulted in a marked increase in the number of images used per study, typically providing the basis for the other trends in evidence. These key trends include an increase in automated processing, use of analysis-ready data (especially those with atmospheric correction), and use of cloud computing platforms, all over increasing large areas. The nature of change methods has evolved from representative bi-temporal pairs to time series of images capturing dynamics and trends, capable of revealing both gradual and abrupt changes. The result also revealed a greater use of nonparametric classifiers for Landsat change detection analysis. Landsat-9, to be launched in September 2021, in combination with the continued operation of Landsat-8 and integration with Sentinel-2, enhances opportunities for improved monitoring of change over increasingly larger areas with greater intra- and interannual frequency.
引用
收藏
页数:33
相关论文
共 105 条
[41]   Detecting trends in forest disturbance and recovery using yearly Landsat time series: 1. LandTrendr - Temporal segmentation algorithms [J].
Kennedy, Robert E. ;
Yang, Zhigiang ;
Cohen, Warren B. .
REMOTE SENSING OF ENVIRONMENT, 2010, 114 (12) :2897-2910
[42]   Remote sensing change detection tools for natural resource managers: Understanding concepts and tradeoffs in the design of landscape monitoring projects [J].
Kennedy, Robert E. ;
Townsend, Philip A. ;
Gross, John E. ;
Cohen, Warren B. ;
Bolstad, Paul ;
Wang, Y. Q. ;
Adams, Phyllis .
REMOTE SENSING OF ENVIRONMENT, 2009, 113 (07) :1382-1396
[43]   Living with floating vegetation invasions [J].
Kleinschroth, Fritz ;
Winton, R. Scott ;
Calamita, Elisa ;
Niggemann, Fabian ;
Botter, Martina ;
Wehrli, Bernhard ;
Ghazoul, Jaboury .
AMBIO, 2021, 50 (01) :125-137
[44]   Global Carbon Budget 2016 [J].
Le Quere, Corinne ;
Andrew, Robbie M. ;
Canadell, Josep G. ;
Sitch, Stephen ;
Korsbakken, Jan Ivar ;
Peters, Glen P. ;
Manning, Andrew C. ;
Boden, Thomas A. ;
Tans, Pieter P. ;
Houghton, Richard A. ;
Keeling, Ralph F. ;
Alin, Simone ;
Andrews, Oliver D. ;
Anthoni, Peter ;
Barbero, Leticia ;
Bopp, Laurent ;
Chevallier, Frederic ;
Chini, Louise P. ;
Ciais, Philippe ;
Currie, Kim ;
Delire, Christine ;
Doney, Scott C. ;
Friedlingstein, Pierre ;
Gkritzalis, Thanos ;
Harris, Ian ;
Hauck, Judith ;
Haverd, Vanessa ;
Hoppema, Mario ;
Goldewijk, Kees Klein ;
Jain, Atul K. ;
Kato, Etsushi ;
Koertzinger, Arne ;
Landschuetzer, Peter ;
Lefevre, Nathalie ;
Lenton, Andrew ;
Lienert, Sebastian ;
Lombardozzi, Danica ;
Melton, Joe R. ;
Metzl, Nicolas ;
Millero, Frank ;
Monteiro, Pedro M. S. ;
Munro, David R. ;
Nabel, Julia E. M. S. ;
Nakaoka, Shin-ichiro ;
O'Brien, Kevin ;
Olsen, Are ;
Omar, Abdirahman M. ;
Ono, Tsuneo ;
Pierrot, Denis ;
Poulter, Benjamin .
EARTH SYSTEM SCIENCE DATA, 2016, 8 (02) :605-649
[45]   Global Revisit Interval Analysis of Landsat-8-9 and Sentinel-2A-2B Data for Terrestrial Monitoring [J].
Li, Jian ;
Chen, Baozhang .
SENSORS, 2020, 20 (22) :1-15
[46]   A Global Analysis of Sentinel-2A, Sentinel-2B and Landsat-8 Data Revisit Intervals and Implications for Terrestrial Monitoring [J].
Li, Jian ;
Roy, David P. .
REMOTE SENSING, 2017, 9 (09)
[47]   Change detection techniques [J].
Lu, D ;
Mausel, P ;
Brondízio, E ;
Moran, E .
INTERNATIONAL JOURNAL OF REMOTE SENSING, 2004, 25 (12) :2365-2407
[48]   Long-Term Annual Mapping of Four Cities on Different Continents by Applying a Deep Information Learning Method to Landsat Data [J].
Lyu, Haobo ;
Lu, Hui ;
Mou, Lichao ;
Li, Wenyu ;
Wright, Jonathon ;
Li, Xuecao ;
Li, Xinlu ;
Zhu, Xiao Xiang ;
Wang, Jie ;
Yu, Le ;
Gong, Peng .
REMOTE SENSING, 2018, 10 (03)
[49]  
Mack P.E., VIEWING EARTH SOCIAL
[50]   Landsat sensor performance: History and current status [J].
Markham, BL ;
Storey, JC ;
Williams, DL ;
Irons, JR .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2004, 42 (12) :2691-2694