LEARNING NONLOCAL REGULARIZATION OPERATORS

被引:12
作者
Holler, Gernot [1 ]
Kunisch, Karl [1 ,2 ]
机构
[1] Karl Franzens Univ Graz, Inst Math & Sci Comp, Heinrichstr 36, A-8010 Graz, Austria
[2] Austrian Acad Sci, Radon Inst, RICAM Linz, Altenbergerstr 69, A-4040 Linz, Austria
基金
欧盟地平线“2020”; 奥地利科学基金会; 欧洲研究理事会;
关键词
Nonlocal operators; optimal control; inverse problems; bilevel opti-mization; fractional order regularization; learning; APPROXIMATION; OPTIMIZATION; MODEL;
D O I
10.3934/mcrf.2021003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A learning approach for determining which operator from a class of nonlocal operators is optimal for the regularization of an inverse problem is investigated. The considered class of nonlocal operators is motivated by the use of squared fractional order Sobolev seminorms as regularization operators. First fundamental results from the theory of regularization with local operators are extended to the nonlocal case. Then a framework based on a bilevel opti-mization strategy is developed which allows to choose nonlocal regularization operators from a given class which i) are optimal with respect to a suitable performance measure on a training set, and ii) enjoy particularly favorable properties. Results from numerical experiments are also provided.
引用
收藏
页码:81 / 114
页数:34
相关论文
共 30 条
[1]  
Adams R. A., 2003, SOBOLEV SPACES PURE, V140
[2]   A generalized nonlocal vector calculus [J].
Alali, Bacim ;
Liu, Kuo ;
Gunzburger, Max .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2015, 66 (05) :2807-2828
[3]  
[Anonymous], 2011, MATH BILDVERARBEITUN
[4]   SOBOLEV SPACES WITH NON-MUCKENHOUPT WEIGHTS, FRACTIONAL ELLIPTIC OPERATORS, AND APPLICATIONS [J].
Antil, Harbir ;
Rautenberg, Carlos N. .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2019, 51 (03) :2479-2503
[5]   Optimization with Respect to Order in a Fractional Diffusion Model: Analysis, Approximation and Algorithmic Aspects [J].
Antil, Harbir ;
Otarola, Enrique ;
Salgado, Abner J. .
JOURNAL OF SCIENTIFIC COMPUTING, 2018, 77 (01) :204-224
[6]  
Brezis H, 2011, UNIVERSITEXT, P1
[7]   IMAGE DENOISING: LEARNING THE NOISE MODEL VIA NONSMOOTH PDE-CONSTRAINED OPTIMIZATION [J].
Carlos De los Reyes, Juan ;
Schoenlieb, Carola-Bibiane .
INVERSE PROBLEMS AND IMAGING, 2013, 7 (04) :1183-1214
[8]  
Cartan H., 1971, Differential Calculus
[9]  
Casas E., 2015, Jahresber. Dtsch.Math.-Ver, P3, DOI DOI 10.1365/S13291-014-0109-3
[10]   Analysis of control problems of nonmontone semilinear elliptic equations* [J].
Casas, Eduardo ;
Mateos, Mariano ;
Roesch, Arnd .
ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2020, 26