CLASSIFICATION OF POSITIVE SINGULAR SOLUTIONS TO A NONLINEAR BIHARMONIC EQUATION WITH CRITICAL EXPONENT

被引:32
作者
Frank, Rupert L. [1 ,2 ]
Koenig, Tobias [1 ]
机构
[1] Ludwig Maximilians Univ Munchen, Math Inst, Munich, Germany
[2] CALTECH, Dept Math, Pasadena, CA 91125 USA
基金
美国国家科学基金会;
关键词
fourth-order equation; critical exponent; classification; periodic solutions; SCALAR CURVATURE METRICS; DIFFERENTIAL-EQUATIONS; WEAK SOLUTIONS; SOBOLEV; REGULARITY; BEHAVIOR;
D O I
10.2140/apde.2019.12.1101
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For n >= 5, we consider positive solutions u of the biharmonic equation Delta(2)u = u((n+4)/(n-4)) on R-n \ {0}, with a nonremovable singularity at the origin. We show that vertical bar x vertical bar((n-4)/2)u is a periodic function of ln vertical bar x vertical bar and we classify all periodic functions obtained in this way. This result is relevant for the description of the asymptotic behavior of local solutions near singularities and for the Q-curvature problem in conformal geometry.
引用
收藏
页码:1101 / 1113
页数:13
相关论文
共 20 条
[1]  
Amick CJ, 1992, European J Appl Math, V3, P97, DOI DOI 10.1017/S0956792500000735
[2]  
Baraket S, 2002, ADV NONLINEAR STUD, V2, P459
[3]  
Buffoni B, 1996, J Dynam Differential Equations, V8, P221, DOI [10.1007/BF02218892, DOI 10.1007/BF02218892]
[4]   ASYMPTOTIC SYMMETRY AND LOCAL BEHAVIOR OF SEMILINEAR ELLIPTIC-EQUATIONS WITH CRITICAL SOBOLEV GROWTH [J].
CAFFARELLI, LA ;
GIDAS, B ;
SPRUCK, J .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1989, 42 (03) :271-297
[5]  
Chang SYA, 1999, AM J MATH, V121, P215
[6]  
Chang SYA, 1997, MATH RES LETT, V4, P91
[7]  
Guo Z, 2017, PREPRINT
[8]   Singular radial entire solutions and weak solutions with prescribed singular set for a biharmonic equation [J].
Guo, Zongming ;
Wei, Juncheng ;
Zhou, Feng .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2017, 263 (02) :1188-1224
[9]  
Hang F., 2016, Lect. Notes Ser. Inst. Math. Sci. Natl. Univ. Singap., V31, P1
[10]   Refined asymptotics for constant scalar curvature metrics with isolated singularities [J].
Korevaar, N ;
Mazzeo, R ;
Pacard, F ;
Schoen, R .
INVENTIONES MATHEMATICAE, 1999, 135 (02) :233-272