Properties of derivative expansion approximations to the renormalization group

被引:37
作者
Morris, TR [1 ]
机构
[1] Univ Southampton, Dept Phys, Southampton SO17 1BJ, Hants, England
来源
INTERNATIONAL JOURNAL OF MODERN PHYSICS B | 1998年 / 12卷 / 12-13期
关键词
D O I
10.1142/S0217979298000752
中图分类号
O59 [应用物理学];
学科分类号
摘要
Approximation only by derivative (or more generally momentum) expansions, combined with reparametrization invariance, turns the continuous renormalization group into a set of partial differential equations which at fixed points become nonlinear eigenvalue equations for the anomalous scaling dimension eta. We review how these equations provide a powerful and robust means of discovering and approximating non-perturbative continuum limits. Gauge fields are briefly discussed. Particular emphasis is placed on the role of reparametrization invariance, and the convergence of the derivative expansion is addressed.
引用
收藏
页码:1343 / 1354
页数:12
相关论文
共 49 条
[1]   SCHEME INDEPENDENCE AND THE EXACT RENORMALIZATION-GROUP [J].
BALL, RD ;
HAAGENSEN, PE ;
LATORRE, JI ;
MORENO, E .
PHYSICS LETTERS B, 1995, 347 (1-2) :80-88
[2]  
BAUER M, 1989, STAT FIELD THEORY, V1
[3]   FINITE-LATTICE APPROXIMATIONS TO RENORMALIZATION GROUPS [J].
BELL, TL ;
WILSON, KG .
PHYSICAL REVIEW B, 1975, 11 (09) :3431-3444
[4]   BRS SYMMETRY FROM RENORMALIZATION-GROUP FLOW [J].
BONINI, M ;
DATTANASIO, M ;
MARCHESINI, G .
PHYSICS LETTERS B, 1995, 346 (1-2) :87-93
[5]   BRS SYMMETRY FOR YANG-MILLS THEORY WITH EXACT RENORMALIZATION-GROUP [J].
BONINI, M ;
DATTANASIO, M ;
MARCHESINI, G .
NUCLEAR PHYSICS B, 1995, 437 (01) :163-186
[6]   STUDY OF A LOCAL RG APPROXIMATION [J].
BREUS, SA ;
FILIPPOV, AE .
PHYSICA A, 1993, 192 (03) :486-515
[7]  
BURKHARDT TW, 1982, REAL SPACE RENORMALI
[8]  
CARDY J, 1987, PHASE TRANSITIONS CR, V11
[9]   Exact renormalization group study of fermionic theories [J].
Comellas, J ;
Kubyshin, Y ;
Moreno, E .
NUCLEAR PHYSICS B, 1997, 490 (03) :653-686
[10]  
COMELLAS J, HEPTH9601112