Brouwer type conjecture for the eigenvalues of distance signless Laplacian matrix of a graph

被引:29
作者
Alhevaz, A. [1 ]
Baghipur, M. [1 ]
Ganie, Hilal A. [2 ]
Pirzada, S. [2 ]
机构
[1] Shahrood Univ Technol, Fac Math Sci, Shahrood, Iran
[2] Univ Kashmir, Dept Math, Srinagar, Jammu & Kashmir, India
关键词
Distance signless Laplacian matrix; threshold graph; transmission regular graph; SPECTRUM; ENERGY; SUM;
D O I
10.1080/03081087.2019.1679074
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a simple connected graph with n vertices, m edges and having distance signless Laplacian eigenvalues rho(1) >= rho(2) >= ... >= rho(n) >= 0. For 1 <= k <= n, let M-k(G) = (i=1)Sigma(k) rho(i) and N-k(G) = Sigma(k-1)(i=0) rho(n-i) be respectively the sum of k-largest distance signless Laplacian eigenvalues and the sum of k-smallest distance signless Laplacian eigenvalues of G. In this paper, we obtain the bounds for M-k(G) and N-k(G) in terms of the number of vertices n and the transmission sigma(G) of the graph G. We propose a Brouwer-type conjecture for M-k(G) and show that it holds for graphs of diameter one and graphs of diameter two for all k. As a consequence, we observe that the conjecture holds for threshold graphs and split graphs (of diameter two). Wealso show that it holds for k = n-1 and n for all graphs and for some k for r-transmission regular graphs.
引用
收藏
页码:2423 / 2440
页数:18
相关论文
共 23 条
[1]   On the Wiener index, distance cospectrality and transmission-regular graphs [J].
Abiad, Aida ;
Brimkov, Boris ;
Erey, Aysel ;
Leshock, Lorinda ;
Martinez-Rivera, Xavier ;
Suil, O. ;
Song, Sung-Yell ;
Williford, Jason .
DISCRETE APPLIED MATHEMATICS, 2017, 230 :1-10
[2]  
Alhevaz A, PREPRINT
[3]   On distance signless Laplacian spectrum and energy of graphs [J].
Alhevaz, Abdollah ;
Baghipur, Maryam ;
Hashemi, Ebrahim .
ELECTRONIC JOURNAL OF GRAPH THEORY AND APPLICATIONS, 2018, 6 (02) :326-340
[4]   On the distance signless Laplacian spectral radius and the distance signless Laplacian energy of graphs [J].
Alhevaz, Abdollah ;
Baghipur, Maryam ;
Paul, Somnath .
DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2018, 10 (03)
[5]   On the distance signless Laplacian of a graph [J].
Aouchiche, Mustapha ;
Hansen, Pierre .
LINEAR & MULTILINEAR ALGEBRA, 2016, 64 (06) :1113-1123
[6]   Two Laplacians for the distance matrix of a graph [J].
Aouchiche, Mustapha ;
Hansen, Pierre .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2013, 439 (01) :21-33
[7]   On the sum of signless Laplacian eigenvalues of a graph [J].
Ashraf, F. ;
Omidi, G. R. ;
Tayfeh-Rezaie, B. .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2013, 438 (11) :4539-4546
[8]  
Brouwer AE, SPECTRA GRAPHS
[9]  
ENTRINGER RC, 1976, CZECH MATH J, V26, P283
[10]   EXPLORING SYMMETRIES TO DECOMPOSE MATRICES AND GRAPHS PRESERVING THE SPECTRUM [J].
Fritscher, Eliseu ;
Trevisan, Vilmar .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2016, 37 (01) :260-289