On Jupiter and his Galilean satellites: Librations of De Sitter's periodic motions

被引:10
作者
Broer, Henk W. [1 ]
Hanssmann, Heinz [2 ]
机构
[1] Univ Groningen, Johann Bernoulli Inst Math & Comp Sci, Groningen, Netherlands
[2] Univ Utrecht, Math Inst, Postbus 80-010, NL-3508 TA Utrecht, Netherlands
来源
INDAGATIONES MATHEMATICAE-NEW SERIES | 2016年 / 27卷 / 05期
关键词
Periodic orbit; Quasi-periodic orbit; KAM theory; Celestial mechanics; STABILITY; TORI;
D O I
10.1016/j.indag.2016.09.002
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The motion of Jupiter's four Galilean satellites Io-Europa-Ganymedes-Callisto is subjected to an orbital 1:2:4 resonance of the former (and inner) three. Willem de Sitter in the early 20th century gave a mathematical explanation of this in a Newtonian framework. He found a family of stable periodic solutions by using the work of Poincare. This paper briefly reviews De Sitter's theory, and focuses on the underlying geometry of a suitable covering space, where we develop Kolmogorov-Arnold-Moser theory to find Lagrangean invariant tori excited by the normal modes of the De Sitter periodic orbits. In this way we find many librations near these periodic orbits that may well offer a more realistic explanation of the observations. (C) 2016 Royal Dutch Mathematical Society (KWG). Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:1305 / 1336
页数:32
相关论文
共 34 条
[1]  
[Anonymous], 2007, Appl. Math. Sci
[2]  
[Anonymous], 1983, GEOMETRICAL METHODS
[3]  
[Anonymous], QUASIPERIODIC UNPUB
[4]  
Arnold V I, 2006, MATH ASPECTS CLASSIC
[5]  
Arnold V. I., 1971, Russian Math. Surveys, V26, P29
[6]  
ARNOLD V. I., 1989, Graduate Texts in Math., DOI DOI 10.1007/978-1-4757-2063-1
[7]  
Arnold V. I., 1963, Russian Mathematical Surveys, V18, P85, DOI [DOI 10.1070/RM1963V018N06ABEH001143, 10.1070/RM1963v018n06ABEH001143]
[8]   Normal-internal resonances in quasi-periodically forced oscillators: a conservative approach [J].
Broer, H ;
Hanssmann, H ;
Jorba, A ;
Villanueva, J ;
Wagener, F .
NONLINEARITY, 2003, 16 (05) :1751-1791
[9]   Normal linear stability of quasi-periodic tori [J].
Broer, H. W. ;
Hoo, J. ;
Naudot, V. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2007, 232 (02) :355-418
[10]  
Broer HW, 2010, HANDBOOK OF DYNAMICAL SYSTEMS, VOL 3, P249