Identifying and localizing intracellular nanoparticles using Raman spectroscopy

被引:74
|
作者
Dorney, Jennifer [2 ,3 ]
Bonnier, Franck [1 ]
Garcia, Amaya [1 ]
Casey, Alan [2 ]
Chambers, Gordon [2 ,3 ]
Byrne, Hugh J. [2 ]
机构
[1] Dublin Inst Technol, Radiat & Environm Sci Ctr, Dublin 8, Ireland
[2] Dublin Inst Technol, Focas Res Inst, Nanolab Res Ctr, Dublin 8, Ireland
[3] Dublin Inst Technol, Sch Phys, Dublin 8, Ireland
关键词
SINGLE LIVING CELLS; LIVE CELLS; POLYMERIC NANOPARTICLES; GOLD NANOPARTICLES; EPITHELIAL-CELLS; CELLULAR UPTAKE; SIZE; PARTICLES; TOXICITY; CULTURE;
D O I
10.1039/c2an15977e
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Raman microscopy is employed to spectroscopically image biological cells previously exposed to fluorescently labelled polystyrene nanoparticles and, in combination with K-means clustering and principal component analysis (PCA), is demonstrated to be capable of localising the nanoparticles and identifying the subcellular environment based on the molecular spectroscopic signatures. The neutral nanoparticles of 50 nm or 100 nm, as characterised by dynamic light scattering, are shown to be nontoxic to a human lung adenocarcinoma cell-line (A549), according to a range of cytotoxicity assays including Neutral Red, Alamar Blue, Coomassie Blue and 3-(4,5-dimethylthiazol-2-yl)-2,5diphenyltetrazolium bromide (MTT). Confocal fluorescence microscopy identifies intracellular fluorescence due to the nanoparticle exposure, but the fluorescence distribution is spatially diffuse, potentially due to detachment of the dye from the nanoparticles, and the technique fails to unambiguously identify the distribution of the nanoparticles within the cells. Raman spectroscopic mapping of the cells in combination with K-means cluster analysis is used to clearly identify and localise the polystyrene nanoparticles in exposed cells, based on their characteristic spectroscopic signatures. PCA identifies the local environment as rich in lipidic signatures which are associated with localisation of the nanoparticles in the endoplasmic reticulum. The importance of optimised cell growth conditions and fixation processes is highlighted. The preliminary study demonstrates the potential of the technique to unambiguously identify and locate nonfluorescent nanoparticles in cells and to probe not only the local environment but also changes in the cell metabolism which may be associated with cytotoxic responses.
引用
收藏
页码:1111 / 1119
页数:9
相关论文
共 50 条
  • [21] Probing of different conformations of piperazine using Raman spectroscopy
    SenGupta, Sumana
    Maiti, Nandita
    Chadha, Ridhima
    Kapoor, Sudhir
    CHEMICAL PHYSICS, 2014, 436 : 55 - 62
  • [22] Assessing Cobalt Metal Nanoparticles Uptake by Cancer Cells Using Live Raman Spectroscopy
    Rauwel, Erwan
    Al-Arag, Siham
    Salehi, Hamideh
    Amorim, Carlos O.
    Cuisinier, Frederic
    Guha, Mithu
    Rosario, Maria S.
    Rauwel, Protima
    INTERNATIONAL JOURNAL OF NANOMEDICINE, 2020, 15 : 7051 - 7062
  • [23] Detection of chlorpyrifos in apples using gold nanoparticles based on surface enhanced Raman spectroscopy
    Zhai Chen
    Li Yongyu
    Peng Yankun
    Xu Tianfeng
    INTERNATIONAL JOURNAL OF AGRICULTURAL AND BIOLOGICAL ENGINEERING, 2015, 8 (05) : 113 - 120
  • [24] Surface-Enhanced Raman Spectroscopy (SERS) Activity of Gold Nanoparticles Prepared Using an Automated Loop Flow Reactor
    Ma, Haikuan
    Zhang, Shuwei
    Yuan, Guang
    Liu, Yan
    Cao, Xuan
    Kong, Xiangfeng
    Wang, Yang
    APPLIED SPECTROSCOPY, 2023, 77 (10) : 1163 - 1172
  • [25] Raman spectroscopy and support vector machines for quick toxicological evaluation of titania nanoparticles
    Pyrgiotakis, Georgios
    Kundakcioglu, O. Erhun
    Pardalos, Panos M.
    Moudgil, Brij M.
    JOURNAL OF RAMAN SPECTROSCOPY, 2011, 42 (06) : 1222 - 1231
  • [26] Raman spectroscopy of gold nanoparticles in polycrystalline LiF film
    N. V. Kurbatova
    M. F. Galyautdinov
    N. A. Ivanov
    S. S. Kolesnikov
    V. L. Papernyi
    Yu. N. Osin
    A. L. Stepanov
    Physics of the Solid State, 2013, 55 : 1899 - 1902
  • [27] Gold Nanoparticles for Surface-Enhanced Raman Spectroscopy
    Matsukovich, A. S.
    Shabunya-Klyachkovskaya, E., V
    Sawczak, M.
    Grochowska, K.
    Maskowicz, D.
    Sliwinski, G.
    INTERNATIONAL JOURNAL OF NANOSCIENCE, 2019, 18 (3-4)
  • [28] Influence of surface coating on the intracellular behaviour of gold nanoparticles: a fluorescence correlation spectroscopy study
    Silvestri, A.
    Di Silvio, D.
    Llarena, I.
    Murray, R. A.
    Marelli, M.
    Lay, L.
    Polito, L.
    Moya, S. E.
    NANOSCALE, 2017, 9 (38) : 14730 - 14739
  • [29] TNF-α detection using gold nanoparticles as a surface-enhanced Raman spectroscopy substrate
    Loredo-Garcia, Elizabeth
    Ortiz-Dosal, Alejandra
    Manuel Nunez-Leyva, Juan
    Cuellar Camacho, Jose Luis
    Alejandro Alegria-Torres, Jorge
    Garcia-Torres, Lizeth
    Ricardo Navarro-Contreras, Hugo
    Samuel Kolosovas-Machuca, Eleazar
    NANOMEDICINE, 2020, 16 (01) : 51 - 61
  • [30] Dielectrophoresis-Raman spectroscopy system for analysing suspended nanoparticles
    Chrimes, Adam F.
    Kayani, Aminuddin A.
    Khoshmanesh, Khashayar
    Stoddart, Paul R.
    Mulvaney, Paul
    Mitchell, Arnan
    Kalantar-zadeh, Kourosh
    LAB ON A CHIP, 2011, 11 (05) : 921 - 928