Identifying and localizing intracellular nanoparticles using Raman spectroscopy

被引:74
|
作者
Dorney, Jennifer [2 ,3 ]
Bonnier, Franck [1 ]
Garcia, Amaya [1 ]
Casey, Alan [2 ]
Chambers, Gordon [2 ,3 ]
Byrne, Hugh J. [2 ]
机构
[1] Dublin Inst Technol, Radiat & Environm Sci Ctr, Dublin 8, Ireland
[2] Dublin Inst Technol, Focas Res Inst, Nanolab Res Ctr, Dublin 8, Ireland
[3] Dublin Inst Technol, Sch Phys, Dublin 8, Ireland
关键词
SINGLE LIVING CELLS; LIVE CELLS; POLYMERIC NANOPARTICLES; GOLD NANOPARTICLES; EPITHELIAL-CELLS; CELLULAR UPTAKE; SIZE; PARTICLES; TOXICITY; CULTURE;
D O I
10.1039/c2an15977e
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Raman microscopy is employed to spectroscopically image biological cells previously exposed to fluorescently labelled polystyrene nanoparticles and, in combination with K-means clustering and principal component analysis (PCA), is demonstrated to be capable of localising the nanoparticles and identifying the subcellular environment based on the molecular spectroscopic signatures. The neutral nanoparticles of 50 nm or 100 nm, as characterised by dynamic light scattering, are shown to be nontoxic to a human lung adenocarcinoma cell-line (A549), according to a range of cytotoxicity assays including Neutral Red, Alamar Blue, Coomassie Blue and 3-(4,5-dimethylthiazol-2-yl)-2,5diphenyltetrazolium bromide (MTT). Confocal fluorescence microscopy identifies intracellular fluorescence due to the nanoparticle exposure, but the fluorescence distribution is spatially diffuse, potentially due to detachment of the dye from the nanoparticles, and the technique fails to unambiguously identify the distribution of the nanoparticles within the cells. Raman spectroscopic mapping of the cells in combination with K-means cluster analysis is used to clearly identify and localise the polystyrene nanoparticles in exposed cells, based on their characteristic spectroscopic signatures. PCA identifies the local environment as rich in lipidic signatures which are associated with localisation of the nanoparticles in the endoplasmic reticulum. The importance of optimised cell growth conditions and fixation processes is highlighted. The preliminary study demonstrates the potential of the technique to unambiguously identify and locate nonfluorescent nanoparticles in cells and to probe not only the local environment but also changes in the cell metabolism which may be associated with cytotoxic responses.
引用
收藏
页码:1111 / 1119
页数:9
相关论文
共 50 条
  • [1] Nanoparticles and intracellular applications of surface-enhanced Raman spectroscopy
    Taylor, Jack
    Huefner, Anna
    Li, Li
    Wingfield, Jonathan
    Mahajan, Sumeet
    ANALYST, 2016, 141 (17) : 5037 - 5055
  • [2] Live Intracellular Biorthogonal Imaging by Surface Enhanced Raman Spectroscopy using Alkyne-Silver Nanoparticles Clusters
    Ardini, Matteo
    Huang, Jian-An
    Sanchez, Carlos S.
    Mousavi, Mansoureh Z.
    Caprettini, Valeria
    Maccaferri, Nicolo
    Melle, Giovanni
    Bruno, Giulia
    Pasquale, Lea
    Garoli, Denis
    De Angelis, Francesco
    SCIENTIFIC REPORTS, 2018, 8
  • [3] Confocal Raman spectroscopy to monitor intracellular penetration of TiO2 nanoparticles
    Salehi, Hamideh
    Calas-Bennasar, Isabelle
    Durand, Jean-Cedric
    Middendorp, Elodie
    Valcarcel, Jean
    Larroque, Christian
    Nagy, Katalin
    Turzo K, Kinga
    Dekany, Imre
    Cuisinier, Frederic J. G.
    JOURNAL OF RAMAN SPECTROSCOPY, 2014, 45 (09) : 807 - 813
  • [4] Intracellular Biosynthesis of Gold Nanoparticles for MonitoringMicroalgal BiomassviaSurface-Enhanced Raman Spectroscopy
    Li, Xiaojie
    Mao, Xuemei
    Xie, Weiying
    Liu, Bin
    Chen, Feng
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2022, 10 (15) : 4872 - 4880
  • [5] Raman spectroscopy for intracellular localisation of meso-Tetraphenylporphyrin-gold nanoparticles conjugates
    Al-Majmaie, Rasoul
    Alattar, Nebras
    Kennedy, Eamonn
    Al-Rubeai, Mohamed
    Rice, James H.
    Zerulla, Dominic
    NANOIMAGING AND NANOSPECTROSCOPY, 2013, 8815
  • [6] In vitro monitoring of time and dose dependent cytotoxicity of aminated nanoparticles using Raman spectroscopy
    Efeoglu, Esen
    Casey, Alan
    Byrne, Hugh J.
    ANALYST, 2016, 141 (18) : 5417 - 5431
  • [7] Selectively Tracking Nanoparticles in Aquatic Plant Using Core-Shell Nanoparticle-Enhanced Raman Spectroscopy Imaging
    Yang, Chuan-Wang
    Hu, Yi
    Yuan, Li
    Zhou, Hong-Zhi
    Sheng, Guo-Ping
    ACS NANO, 2021, 15 (12) : 19828 - 19837
  • [8] Synthesis and Raman spectroscopy study of TiO2 nanoparticles
    Alcantara, R.
    Navas, J.
    Fernandez-Lorenzo, C.
    Martin, J.
    Guillen, E.
    Anta, J. A.
    PHYSICA STATUS SOLIDI C: CURRENT TOPICS IN SOLID STATE PHYSICS, VOL 8, NO 6, 2011, 8 (06): : 1970 - 1973
  • [9] Tracking intracellular uptake and localisation of alkyne tagged fatty acids using Raman spectroscopy
    Jamieson, Lauren E.
    Greaves, Jennifer
    McLellan, Jayde A.
    Munro, Kevin R.
    Tomkinson, Nicholas C. O.
    Chamberlain, Luke H.
    Faulds, Karen
    Graham, Duncan
    SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY, 2018, 197 : 30 - 36
  • [10] Identifying Doxycycline Hydrochloride and Tylosin in Chicken Using Surface-Enhanced Raman Spectroscopy
    Wang, Ting
    Yuan, Haichao
    Liu, Muhua
    Chen, Xiongfei
    Huang, Shuanggen
    Zhao, Jinhui
    Chen, Jian
    Zhang, Sha
    Xu, Ning
    SPECTROSCOPY, 2021, 36 (09) : 35 - 40