Production of renewable diesel by hydroprocessing of soybean oil: Effect of catalysts

被引:246
作者
Veriansyah, Bambang [1 ]
Han, Jae Young [1 ,2 ]
Kim, Seok Ki [1 ]
Hong, Seung-Ah [1 ]
Kim, Young Jun [1 ,3 ]
Lim, Jong Sung [2 ]
Shu, Young-Wong [3 ]
Oh, Seong-Geun [3 ]
Kim, Jaehoon [1 ]
机构
[1] Korea Inst Sci & Technol, Natl Agenda Res Div, Clean Energy Res Ctr, Seoul 136791, South Korea
[2] Sogang Univ, Dept Chem & Biomol Engn, Seoul 121742, South Korea
[3] Hanyang Univ, Dept Chem Engn, Seoul 133791, South Korea
关键词
Hydroprocessing; Renewable diesel; Vegetable oil; Catalysts; VEGETABLE-OILS; CO; REFINERIES; OXIDATION; FUEL;
D O I
10.1016/j.fuel.2011.10.057
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The effects of various supported catalysts on the hydroprocessing of soybean oil were studied. Several parameters were taken into account when evaluating the hydroprocessed products, including the conversion, selectivity (naphtha, kero/jet, and diesel), free-fatty acid content, oxygen removal, and saturation of double bonds. The hydroprocessing conversion order was found to be sulfided NiMo/gamma-Al2O3 (92.9%) > 4.29 wt.% Pd/gamma-Al2O3 (91.9%) > sulfided CoMo/gamma-Al2O3 (78.9%) > 57.6 wt.% Ni/SiO2-Al2O3 (60.8%) > 4.95 wt.% Pt/gamma-Al2O3 (50.8%) > 3.06 wt.% Ru/Al2O3 (39.7%) at a catalyst/oil weight ratio of 0.044. The most abundant composition in the liquid product was straight chain n-C-17 and n-C-15 alkanes when the Ni or Pd catalysts were used. Enhanced isomerization and cracking reaction activity on the CoMo catalyst may produce lighter and isomerized hydrocarbons. By combining gas-phase and liquid product analyses, decarboxylation was a dominant reaction pathway when the Pd catalyst was used, while hydrodeoxygenation was favored when the NiMo or CoMo catalyst was used. Crown Copyright (C) 2011 Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:578 / 585
页数:8
相关论文
共 19 条