Testing local-scale panmixia provides insights into the cryptic ecology, evolution, and epidemiology of metazoan animal parasites

被引:27
作者
Gorton, Mary J. [1 ]
Kasl, Emily L. [1 ]
Detwiler, Jillian T. [1 ]
Criscione, Charles D. [1 ]
机构
[1] Texas A&M Univ, Dept Biol, College Stn, TX 77843 USA
关键词
cryptic species; mating systems; molecular epidemiology; transmission; population genetics; POPULATION GENETIC-STRUCTURE; COMPLEX LIFE-CYCLE; ECTOPARASITE IXODES-URIAE; SEX-BIASED DISPERSAL; TELADORSAGIA-CIRCUMCINCTA; MOLECULAR EPIDEMIOLOGY; TRANSMISSION DYNAMICS; SCHISTOSOMA-MANSONI; SELF-FERTILIZATION; LYME BORRELIOSIS;
D O I
10.1017/S0031182012000455
中图分类号
R38 [医学寄生虫学]; Q [生物科学];
学科分类号
07 ; 0710 ; 09 ; 100103 ;
摘要
When every individual has an equal chance of mating with other individuals, the population is classified as panmictic. Amongst metazoan parasites of animals, local-scale panmixia can be disrupted due to not only non-random mating, but also non-random transmission among individual hosts of a single host population or non-random transmission among sympatric host species. Population genetics theory and analyses can be used to test the null hypothesis of panmixia and thus, allow one to draw inferences about parasite population dynamics that are difficult to observe directly. We provide an outline that addresses 3 tiered questions when testing parasite panmixia on local scales: is there greater than 1 parasite population/species, is there genetic subdivision amongst infrapopulations within a host population, and is there asexual reproduction or a non-random mating system? In this review, we highlight the evolutionary significance of non-panmixia on local scales and the genetic patterns that have been used to identify the different factors that may cause or explain deviations from panmixia on a local scale. We also discuss how tests of local-scale panmixia can provide a means to infer parasite population dynamics and epidemiology of medically relevant parasites.
引用
收藏
页码:981 / 997
页数:17
相关论文
共 105 条
  • [1] Genetic diversity and population structure of Schistosoma mansoni within human infrapopulations in Mwea, central Kenya assessed by microsatellite markers
    Agola, L. E.
    Steinauer, M. L.
    Mburu, D. N.
    Mungai, B. N.
    Mwangi, I. N.
    Magoma, G. N.
    Loker, E. S.
    Mkoji, G. M.
    [J]. ACTA TROPICA, 2009, 111 (03) : 219 - 225
  • [2] Agrawal AF, 2001, EVOLUTION, V55, P869, DOI 10.1554/0014-3820(2001)055[0869:PATEOS]2.0.CO
  • [3] 2
  • [4] [Anonymous], 1969, THEORY GENE FREQUENC
  • [5] Standardizing methods to address clonality in population studies
    Arnaud-Haond, S.
    Duarte, C. M.
    Alberto, F.
    Serrao, E. A.
    [J]. MOLECULAR ECOLOGY, 2007, 16 (24) : 5115 - 5139
  • [6] Balloux F, 2004, EVOLUTION, V58, P1891
  • [7] Balloux F, 2003, GENETICS, V164, P1635
  • [8] The role of hybridization in evolution
    Barton, NH
    [J]. MOLECULAR ECOLOGY, 2001, 10 (03) : 551 - 568
  • [9] Parasitology meets ecology on its own terms: Margolis et al revisited
    Bush, AO
    Lafferty, KD
    Lotz, JM
    Shostak, AW
    [J]. JOURNAL OF PARASITOLOGY, 1997, 83 (04) : 575 - 583
  • [10] Host sex and parasite genetic diversity
    Caillaud, Damien
    Prugnolle, Franck
    Durand, Patrick
    Theron, Andre
    de Meeus, Thierry
    [J]. MICROBES AND INFECTION, 2006, 8 (9-10) : 2477 - 2483