Homotopy Colimits and Global Observables in Abelian Gauge Theory

被引:19
作者
Benini, Marco [1 ,2 ,3 ]
Schenkel, Alexander [1 ,2 ,3 ]
Szabo, Richard J. [1 ,2 ,3 ]
机构
[1] Heriot Watt Univ, Dept Math, Edinburgh EH14 4AS, Midlothian, Scotland
[2] Maxwell Inst Math Sci, Edinburgh, Midlothian, Scotland
[3] Tait Inst, Edinburgh, Midlothian, Scotland
基金
英国科学技术设施理事会; 欧洲研究理事会;
关键词
Abelian gauge theory; global configurations and observables; chain complexes; homotopy limits and colimits; FIELDS;
D O I
10.1007/s11005-015-0765-y
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study chain complexes of field configurations and observables for Abelian gauge theory on contractible manifolds, and show that they can be extended to non-contractible manifolds using techniques from homotopy theory. The extension prescription yields functors from a category of manifolds to suitable categories of chain complexes. The extended functors properly describe the global field and observable content of Abelian gauge theory, while the original gauge field configurations and observables on contractible manifolds are recovered up to a natural weak equivalence.
引用
收藏
页码:1193 / 1222
页数:30
相关论文
共 42 条
[21]  
Fewster C.J., ARXIV14037083MATHPH
[22]   A quantum weak energy inequality for spin-one fields in curved space-time [J].
Fewster, CJ ;
Pfenning, MJ .
JOURNAL OF MATHEMATICAL PHYSICS, 2003, 44 (10) :4480-4513
[23]  
Fiorenza D., 2012, P WINT SCH MATH PHYS, DOI [DOI 10.1007/978-3-319-09949-1, 10.1007/978-3-319-09949-16, DOI 10.1007/978-3-319-09949-16]
[24]  
Fredenhagen K., 1992, Reviews in Mathematical Physics, P113, DOI 10.1142/S0129055X92000170
[25]  
Fredenhagen K., 1993, Quantum and non-commutative analysis. Past, present and future perspectives, P41
[26]  
Fredenhagen K, 1990, ALGEBRAIC THEORY SUP, P379
[27]   Batalin-Vilkovisky Formalism in Perturbative Algebraic Quantum Field Theory [J].
Fredenhagen, Klaus ;
Rejzner, Katarzyna .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2013, 317 (03) :697-725
[28]   Batalin-Vilkovisky Formalism in the Functional Approach to Classical Field Theory [J].
Fredenhagen, Klaus ;
Rejzner, Katarzyna .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2012, 314 (01) :93-127
[29]  
Freed DS., 1999, ASIAN J MATH, V3, P819
[30]  
Freed DS., 2000, SURV DIFFER GEOM, V7, P129, DOI [10.4310/SDG.2002.v7.n1.a6, DOI 10.4310/SDG.2002.V7.N1.A6]