Homotopy Colimits and Global Observables in Abelian Gauge Theory

被引:19
|
作者
Benini, Marco [1 ,2 ,3 ]
Schenkel, Alexander [1 ,2 ,3 ]
Szabo, Richard J. [1 ,2 ,3 ]
机构
[1] Heriot Watt Univ, Dept Math, Edinburgh EH14 4AS, Midlothian, Scotland
[2] Maxwell Inst Math Sci, Edinburgh, Midlothian, Scotland
[3] Tait Inst, Edinburgh, Midlothian, Scotland
基金
英国科学技术设施理事会; 欧洲研究理事会;
关键词
Abelian gauge theory; global configurations and observables; chain complexes; homotopy limits and colimits; FIELDS;
D O I
10.1007/s11005-015-0765-y
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study chain complexes of field configurations and observables for Abelian gauge theory on contractible manifolds, and show that they can be extended to non-contractible manifolds using techniques from homotopy theory. The extension prescription yields functors from a category of manifolds to suitable categories of chain complexes. The extended functors properly describe the global field and observable content of Abelian gauge theory, while the original gauge field configurations and observables on contractible manifolds are recovered up to a natural weak equivalence.
引用
收藏
页码:1193 / 1222
页数:30
相关论文
共 50 条
  • [1] Homotopy Colimits and Global Observables in Abelian Gauge Theory
    Marco Benini
    Alexander Schenkel
    Richard J. Szabo
    Letters in Mathematical Physics, 2015, 105 : 1193 - 1222
  • [2] HOMOTOPY COLIMITS IN STABLE REPRESENTATION THEORY
    Salch, Andrew
    HOMOLOGY HOMOTOPY AND APPLICATIONS, 2013, 15 (02) : 331 - 360
  • [3] Sequential Colimits in Homotopy Type Theory
    Sojakova, Kristina
    van Doorn, Floris
    Rijke, Egbert
    PROCEEDINGS OF THE 35TH ANNUAL ACM/IEEE SYMPOSIUM ON LOGIC IN COMPUTER SCIENCE (LICS 2020), 2020, : 845 - 858
  • [4] Homotopy and duality in non-Abelian lattice gauge theory
    Attal, R
    NUCLEAR PHYSICS B, 2004, 684 (03) : 369 - 383
  • [5] Homotopy colimits of classifying spaces of abelian subgroups of a finite group
    Okay, Cihan
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2014, 14 (04): : 2223 - 2257
  • [6] Nonexistence of Colimits in Naive Discrete Homotopy Theory
    Carranza, Daniel
    Kapulkin, Krzysztof
    Kim, Jinho
    APPLIED CATEGORICAL STRUCTURES, 2023, 31 (05)
  • [7] GLOBAL GAUGE IN A NON-ABELIAN THEORY
    SOLOVEV, MA
    JETP LETTERS, 1983, 38 (08) : 504 - 507
  • [8] Nonexistence of Colimits in Naive Discrete Homotopy Theory
    Daniel Carranza
    Krzysztof Kapulkin
    Jinho Kim
    Applied Categorical Structures, 2023, 31
  • [9] HOMOTOPY LIMITS AND COLIMITS
    VOGT, RM
    MATHEMATISCHE ZEITSCHRIFT, 1973, 134 (01) : 11 - 52
  • [10] REALIZABLE HOMOTOPY COLIMITS
    Rodriguez Gonzalez, Beatriz
    THEORY AND APPLICATIONS OF CATEGORIES, 2014, 29 : 609 - 634