Homotopy Colimits and Global Observables in Abelian Gauge Theory

被引:19
作者
Benini, Marco [1 ,2 ,3 ]
Schenkel, Alexander [1 ,2 ,3 ]
Szabo, Richard J. [1 ,2 ,3 ]
机构
[1] Heriot Watt Univ, Dept Math, Edinburgh EH14 4AS, Midlothian, Scotland
[2] Maxwell Inst Math Sci, Edinburgh, Midlothian, Scotland
[3] Tait Inst, Edinburgh, Midlothian, Scotland
基金
欧洲研究理事会; 英国科学技术设施理事会;
关键词
Abelian gauge theory; global configurations and observables; chain complexes; homotopy limits and colimits; FIELDS;
D O I
10.1007/s11005-015-0765-y
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study chain complexes of field configurations and observables for Abelian gauge theory on contractible manifolds, and show that they can be extended to non-contractible manifolds using techniques from homotopy theory. The extension prescription yields functors from a category of manifolds to suitable categories of chain complexes. The extended functors properly describe the global field and observable content of Abelian gauge theory, while the original gauge field configurations and observables on contractible manifolds are recovered up to a natural weak equivalence.
引用
收藏
页码:1193 / 1222
页数:30
相关论文
共 42 条
  • [1] Abbari M. C., 1989, Journal of Geometry and Physics, V6, P537, DOI 10.1016/0393-0440(89)90025-9
  • [2] SMOOTHNESS OF THE ACTION OF THE GAUGE TRANSFORMATION GROUP ON CONNECTIONS
    ABBATI, MC
    CIRELLI, R
    MANIA, A
    MICHOR, P
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1986, 27 (10) : 2469 - 2474
  • [3] [Anonymous], ARXIVHEPTH0605038
  • [4] [Anonymous], ARXIV14061514HEPTH
  • [5] [Anonymous], POS ICMP
  • [6] A C*-Algebra for Quantized Principal U(1)-Connections on Globally Hyperbolic Lorentzian Manifolds
    Benini, Marco
    Dappiaggi, Claudio
    Hack, Thomas-Paul
    Schenkel, Alexander
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2014, 332 (01) : 477 - 504
  • [7] Quantized Abelian Principal Connections on Lorentzian Manifolds
    Benini, Marco
    Dappiaggi, Claudio
    Schenkel, Alexander
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2014, 330 (01) : 123 - 152
  • [8] Bouwknegt P, 2010, LECT NOTES PHYS, V807, P261, DOI 10.1007/978-3-642-11897-5_5
  • [9] The generally covariant locality principle - A new paradigm for local quantum field theory
    Brunetti, R
    Fredenhagen, K
    Verch, R
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2003, 237 (1-2) : 31 - 68
  • [10] Brunetti R., ARXIV13061058MATHPH