Cellular automata for the analysis of biomedical hyperspectral images

被引:0
作者
Spillman, WB [1 ]
Meissner, KE [1 ]
Srnith, SC [1 ]
Conner, S [1 ]
Claus, RO [1 ]
机构
[1] Virginia Polytech Inst & State Univ, Opt Sci & Engn Res Ctr, Blacksburg, VA 24061 USA
来源
BIOMARKERS AND BIOLOGICAL SPECTRAL IMAGING | 2001年 / 4259卷
关键词
D O I
暂无
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
In this paper, we describe a technique whereby cellular automata are used to rapidly scan hyperspectral medical images and quantify the extent of conditions of medical interest. The cellular automata population uses the condition of interest as 'food' and only grows in those areas of the image where the food is present. The size of the cellular automata population can be correlated with the fractional area of the image containing the condition of interest. The technique has the potential to significantly reduce the computational overhead required to analyze a hyperspectral image. A simple model of the technique will be described and the results of its operation on a specific hyperspectral image presented.
引用
收藏
页码:29 / 35
页数:7
相关论文
共 50 条
  • [21] Follicle recognition in ultrasonic images using the cellular automata
    Viher, B
    Dobnikar, A
    Zazula, D
    TENTH IEEE SYMPOSIUM ON COMPUTER-BASED MEDICAL SYSTEMS, PROCEEDINGS, 1997, : 34 - 39
  • [22] Forming of Multi-Colour Images by Cellular Automata
    E. E. Gasanov
    I. M. Komilova
    Moscow University Mathematics Bulletin, 2020, 75 : 72 - 77
  • [23] Identifying lymphoma in microscopy images with Classificational Cellular Automata
    Povalej, Petra
    Verlic, Mateja
    Kokol, Peter
    Sanchez, Jose L.
    Sigut, Jose F.
    19TH IEEE INTERNATIONAL SYMPOSIUM ON COMPUTER-BASED MEDICAL SYSTEMS, PROCEEDINGS, 2006, : 309 - +
  • [24] POST CLASSIFICATION USING CELLULAR AUTOMATA FOR LANDSAT IMAGES
    Sarhan, Ebada
    Khalifa, Eraky
    Nabil, Ayman M.
    MATERIALS SCIENCE AND INFORMATION TECHNOLOGY, PTS 1-8, 2012, 433-440 : 5431 - +
  • [25] Forestry prediction using cellular automata in satellite images
    Gonçalves, RM
    Centeno, TM
    Selleron, G
    REMOTE SENSING FOR AGRICULTURE, ECOSYSTEMS, AND HYDROLOGY V, 2004, 5232 : 257 - 267
  • [26] Symmetry analysis of cellular automata
    Garcia-Morales, V.
    PHYSICS LETTERS A, 2013, 377 (3-4) : 276 - 285
  • [27] ICE: A statistical approach to identifying constituents of biomedical hyperspectral images
    Berman, M
    Phatak, A
    Lagerstrom, R
    Spectral Imaging: Instrumentation, Applications, and Analysis III, 2005, 5694 : 62 - 73
  • [28] Parallel Skeletonizing of Digital Images by Using Cellular Automata
    Pena-Cantillana, Francisco
    Berciano, Ainhoa
    Diaz-Pernil, Daniel
    Gutierrez-Naranjo, Miguel A.
    COMPUTATIONAL TOPOLOGY IN IMAGE CONTEXT (CTIC), 2012, 7309 : 39 - 48
  • [29] Cellular Automata: Elementary Cellular Automata
    Bhardwaj, Rupali
    Upadhyay, Anil
    JOURNAL OF ORGANIZATIONAL AND END USER COMPUTING, 2017, 29 (01) : 42 - 50
  • [30] Fuzzy cellular learning automata for lesion detection in retina images
    Nejad, Hadi Chahkandi
    Azadbakht, Bakhtiar
    Adenihvand, Karim
    Mohammadi, Mohammad
    Mirzamohammad, Mahsa
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2014, 27 (05) : 2297 - 2303