Cellular automata for the analysis of biomedical hyperspectral images

被引:0
作者
Spillman, WB [1 ]
Meissner, KE [1 ]
Srnith, SC [1 ]
Conner, S [1 ]
Claus, RO [1 ]
机构
[1] Virginia Polytech Inst & State Univ, Opt Sci & Engn Res Ctr, Blacksburg, VA 24061 USA
来源
BIOMARKERS AND BIOLOGICAL SPECTRAL IMAGING | 2001年 / 4259卷
关键词
D O I
暂无
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
In this paper, we describe a technique whereby cellular automata are used to rapidly scan hyperspectral medical images and quantify the extent of conditions of medical interest. The cellular automata population uses the condition of interest as 'food' and only grows in those areas of the image where the food is present. The size of the cellular automata population can be correlated with the fractional area of the image containing the condition of interest. The technique has the potential to significantly reduce the computational overhead required to analyze a hyperspectral image. A simple model of the technique will be described and the results of its operation on a specific hyperspectral image presented.
引用
收藏
页码:29 / 35
页数:7
相关论文
共 50 条
[21]   Identifying lymphoma in microscopy images with Classificational Cellular Automata [J].
Povalej, Petra ;
Verlic, Mateja ;
Kokol, Peter ;
Sanchez, Jose L. ;
Sigut, Jose F. .
19TH IEEE INTERNATIONAL SYMPOSIUM ON COMPUTER-BASED MEDICAL SYSTEMS, PROCEEDINGS, 2006, :309-+
[22]   Follicle recognition in ultrasonic images using the cellular automata [J].
Viher, B ;
Dobnikar, A ;
Zazula, D .
TENTH IEEE SYMPOSIUM ON COMPUTER-BASED MEDICAL SYSTEMS, PROCEEDINGS, 1997, :34-39
[23]   Forming of Multi-Colour Images by Cellular Automata [J].
E. E. Gasanov ;
I. M. Komilova .
Moscow University Mathematics Bulletin, 2020, 75 :72-77
[24]   Forming of Multi-Colour Images by Cellular Automata [J].
Gasanov, E. E. ;
Komilova, I. M. .
MOSCOW UNIVERSITY MATHEMATICS BULLETIN, 2020, 75 (02) :72-77
[25]   Evolved Cellular Automata for Edge Detection in Grayscale Images [J].
Enescu, Alina ;
Andreica, Anca ;
Diosan, Laura .
2019 21ST INTERNATIONAL SYMPOSIUM ON SYMBOLIC AND NUMERIC ALGORITHMS FOR SCIENTIFIC COMPUTING (SYNASC 2019), 2020, :326-332
[26]   Forestry prediction using cellular automata in satellite images [J].
Gonçalves, RM ;
Centeno, TM ;
Selleron, G .
REMOTE SENSING FOR AGRICULTURE, ECOSYSTEMS, AND HYDROLOGY V, 2004, 5232 :257-267
[27]   POST CLASSIFICATION USING CELLULAR AUTOMATA FOR LANDSAT IMAGES [J].
Sarhan, Ebada ;
Khalifa, Eraky ;
Nabil, Ayman M. .
MATERIALS SCIENCE AND INFORMATION TECHNOLOGY, PTS 1-8, 2012, 433-440 :5431-+
[28]   ICE: A statistical approach to identifying constituents of biomedical hyperspectral images [J].
Berman, M ;
Phatak, A ;
Lagerstrom, R .
Spectral Imaging: Instrumentation, Applications, and Analysis III, 2005, 5694 :62-73
[29]   Cellular Automata: Elementary Cellular Automata [J].
Bhardwaj, Rupali ;
Upadhyay, Anil .
JOURNAL OF ORGANIZATIONAL AND END USER COMPUTING, 2017, 29 (01) :42-50
[30]   Analysis of Hybrid Group Cellular Automata [J].
Cho, Sung-Jin ;
Choi, Un-Sook ;
Hwang, Yoon-Hee ;
Kim, Han-Doo .
CELLULAR AUTOMATA, PROCEEDINGS, 2006, 4173 :222-231