A solar tower fuel plant for the thermochemical production of kerosene from H2O and CO2

被引:104
|
作者
Zoller, Stefan [1 ]
Koepf, Erik [1 ]
Nizamian, Dustin [1 ]
Stephan, Marco [1 ]
Patane, Adriano [1 ]
Haueter, Philipp [1 ]
Romero, Manuel [2 ]
Gonzalez-Aguilar, Jose [2 ]
Lieftink, Dick [3 ]
de Wit, Ellart [3 ]
Brendelberger, Stefan [4 ]
Sizmann, Andreas [5 ]
Steinfeld, Aldo [1 ]
机构
[1] Swiss Fed Inst Technol, Dept Mech & Proc Engn, Zurich, Switzerland
[2] Unit High, Temp Processes, IMDEA Energy, Mostoles 28935, Spain
[3] HyGear Technol & Services B, NL-6827 AV Arnhem, Netherlands
[4] Inst Future Fuels, German Aerosp Ctr, DLR, D-51147 Cologne, Germany
[5] Bauhaus Luftfahrt, D-82024 Taufkirchen, Germany
基金
欧盟地平线“2020”;
关键词
HIGH-TEMPERATURE; CERIA; REACTOR; CONVERSION; WATER; AIR;
D O I
10.1016/j.joule.2022.06.012
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Developing solar technologies for producing carbon-neutral aviation fuels has become a global energy challenge, but their readiness level has largely been limited to laboratory-scale studies. Here, we report on the experimental demonstration of a fully integrated thermochemical production chain from H2O and CO2 to kerosene using concentrated solar energy in a solar tower configuration. The cosplitting of H2O and CO2 was performed via a ceria-based thermochemical redox cycle to produce a tailored mixture of H-2 and CO (syngas) with full selectivity, which was further processed to kerosene. The 50-kW solar reactor consisted of a cavity-receiver containing a reticulated porous structure directly exposed to a mean solar flux concentration of 2,500 suns. A solar-to-syngas energy conversion efficiency of 4.1% was achieved without applying heat recovery. This solar tower fuel plant was operated with a setup relevant to industrial implementation, setting a technological milestone toward the production of sustainable aviation fuels.
引用
收藏
页码:1606 / 1616
页数:12
相关论文
共 50 条
  • [21] Characterization of Two-Step Tin-Based Redox System for Thermochemical Fuel Production from Solar-Driven CO2 and H2O Splitting Cycle
    Leveque, Gael
    Abanades, Stephane
    Jumas, Jean-Claude
    Olivier-Fourcade, Josette
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2014, 53 (14) : 5668 - 5677
  • [22] CO2 and H2O Splitting for Thermochemical Production of Solar Fuels Using Nonstoichiometric Ceria and Ceria/Zirconia Solid Solutions
    Le Gal, Alex
    Abanades, Stephane
    Flamant, Gilles
    ENERGY & FUELS, 2011, 25 (10) : 4836 - 4845
  • [23] High-temperature heat recovery from a solar reactor for the thermochemical redox splitting of H2O and CO2
    Lidor, Alon
    Aschwanden, Yves
    Haseli, Jamina
    Reckinger, Pit
    Haueter, Philipp
    Steinfeld, Aldo
    APPLIED ENERGY, 2023, 329
  • [24] THE PRODUCTION OF OXALIC-ACID FROM CO2 AND H2O
    FISCHER, J
    LEHMANN, T
    HEITZ, E
    JOURNAL OF APPLIED ELECTROCHEMISTRY, 1981, 11 (06) : 743 - 750
  • [25] Clean Fuel Production Through High Temperature Co-Electrolysis of H2O and CO2
    Wang Zhen
    Yu Bo
    Zhang Wenqiang
    Chen Jing
    Xu Jingming
    PROGRESS IN CHEMISTRY, 2013, 25 (07) : 1229 - 1236
  • [26] Modeling of Thermochemical Conversion of Glycerol: Pyrolysis and H2O and CO2 Gasification
    Tala Alsamad
    Manar Almazrouei
    Mohammed Noorul Hussain
    Isam Janajreh
    Waste and Biomass Valorization, 2018, 9 : 2361 - 2371
  • [27] A green process for production of p-aminophenol from nitrobenzene hydrogenation in CO2/H2O: The promoting effects of CO2 and H2O
    Zhao, Lijun
    Cheng, Haiyang
    Liu, Tong
    Li, Yan
    Ying, Zhong
    Yang, Wenjing
    Lin, Weiwei
    Meng, Xiangchun
    Wang, Chengxue
    Zhao, Fengyu
    JOURNAL OF CO2 UTILIZATION, 2017, 18 : 229 - 236
  • [28] Modeling of Thermochemical Conversion of Glycerol: Pyrolysis and H2O and CO2 Gasification
    Alsamad, Tala
    Almazrouei, Manar
    Hussain, Mohammed Noorul
    Janajreh, Isam
    WASTE AND BIOMASS VALORIZATION, 2018, 9 (12) : 2361 - 2371
  • [29] Comparing the solar-to-fuel energy conversion efficiency of ceria and perovskite based thermochemical redox cycles for splitting H2O and CO2
    Muhich, Christopher L.
    Blaser, Samuel
    Hoes, Marie C.
    Steinfeld, Aldo
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2018, 43 (41) : 18814 - 18831
  • [30] Lanthanum-Strontium-Manganese Perovskites as Redox Materials for Solar Thermochemical Splitting of H2O and CO2
    Scheffe, Jonathan R.
    Weibel, David
    Steinfed, Aldo
    ENERGY & FUELS, 2013, 27 (08) : 4250 - 4257