A solar tower fuel plant for the thermochemical production of kerosene from H2O and CO2

被引:132
作者
Zoller, Stefan [1 ]
Koepf, Erik [1 ]
Nizamian, Dustin [1 ]
Stephan, Marco [1 ]
Patane, Adriano [1 ]
Haueter, Philipp [1 ]
Romero, Manuel [2 ]
Gonzalez-Aguilar, Jose [2 ]
Lieftink, Dick [3 ]
de Wit, Ellart [3 ]
Brendelberger, Stefan [4 ]
Sizmann, Andreas [5 ]
Steinfeld, Aldo [1 ]
机构
[1] Swiss Fed Inst Technol, Dept Mech & Proc Engn, Zurich, Switzerland
[2] Unit High, Temp Processes, IMDEA Energy, Mostoles 28935, Spain
[3] HyGear Technol & Services B, NL-6827 AV Arnhem, Netherlands
[4] Inst Future Fuels, German Aerosp Ctr, DLR, D-51147 Cologne, Germany
[5] Bauhaus Luftfahrt, D-82024 Taufkirchen, Germany
基金
欧盟地平线“2020”; 英国科研创新办公室;
关键词
HIGH-TEMPERATURE; CERIA; REACTOR; CONVERSION; WATER; AIR;
D O I
10.1016/j.joule.2022.06.012
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Developing solar technologies for producing carbon-neutral aviation fuels has become a global energy challenge, but their readiness level has largely been limited to laboratory-scale studies. Here, we report on the experimental demonstration of a fully integrated thermochemical production chain from H2O and CO2 to kerosene using concentrated solar energy in a solar tower configuration. The cosplitting of H2O and CO2 was performed via a ceria-based thermochemical redox cycle to produce a tailored mixture of H-2 and CO (syngas) with full selectivity, which was further processed to kerosene. The 50-kW solar reactor consisted of a cavity-receiver containing a reticulated porous structure directly exposed to a mean solar flux concentration of 2,500 suns. A solar-to-syngas energy conversion efficiency of 4.1% was achieved without applying heat recovery. This solar tower fuel plant was operated with a setup relevant to industrial implementation, setting a technological milestone toward the production of sustainable aviation fuels.
引用
收藏
页码:1606 / 1616
页数:12
相关论文
共 40 条
[1]   Design of a Solar Reactor to Split CO2 Via Isothermal Redox Cycling of Ceria [J].
Bader, Roman ;
Chandran, Rohini Bala ;
Venstrom, Luke J. ;
Sedler, Stephen J. ;
Krenzke, Peter T. ;
De Smith, Robert M. ;
Banerjee, Aayan ;
Chase, Thomas R. ;
Davidson, Jane H. ;
Lipinski, Wojciech .
JOURNAL OF SOLAR ENERGY ENGINEERING-TRANSACTIONS OF THE ASME, 2015, 137 (03)
[2]   Concept analysis of an indirect particle-based redox process for solar-driven H2O/CO2 splitting [J].
Brendelberger, Stefan ;
Sattler, Christian .
SOLAR ENERGY, 2015, 113 :158-170
[3]   Advances and trends in redox materials for solar thermochemical fuel production [J].
Carrillo, Richard J. ;
Scheffe, Jonathan R. .
SOLAR ENERGY, 2017, 156 :3-20
[4]   High-Flux Solar-Driven Thermochemical Dissociation of CO2 and H2O Using Nonstoichiometric Ceria [J].
Chueh, William C. ;
Falter, Christoph ;
Abbott, Mandy ;
Scipio, Danien ;
Furler, Philipp ;
Haile, Sossina M. ;
Steinfeld, Aldo .
SCIENCE, 2010, 330 (6012) :1797-1801
[5]   A thermochemical study of ceria: exploiting an old material for new modes of energy conversion and CO2 mitigation [J].
Chueh, William C. ;
Haile, Sossina M. .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2010, 368 (1923) :3269-3294
[6]   Solar thermochemical water-splitting ferrite-cycle heat engines [J].
Diver, Richard B. ;
Miller, James E. ;
Allendorf, Mark D. ;
Siegel, Nathan P. ;
Hogan, Roy E. .
JOURNAL OF SOLAR ENERGY ENGINEERING-TRANSACTIONS OF THE ASME, 2008, 130 (04)
[7]   The Fischer-Tropsch process: 1950-2000 [J].
Dry, ME .
CATALYSIS TODAY, 2002, 71 (3-4) :227-241
[8]   A New Reactor Concept for Efficient Solar-Thermochemical Fuel Production [J].
Ermanoski, Ivan ;
Siegel, Nathan P. ;
Stechel, Ellen B. .
JOURNAL OF SOLAR ENERGY ENGINEERING-TRANSACTIONS OF THE ASME, 2013, 135 (03)
[9]   An integrated techno-economic, environmental and social assessment of the solar thermochemical fuel pathway [J].
Falter, Christoph ;
Valente, Antonio ;
Habersetzer, Antoine ;
Iribarren, Diego ;
Dufour, Javier .
SUSTAINABLE ENERGY & FUELS, 2020, 4 (08) :3992-4002
[10]   Modeling counter-flow particle heat exchangers for two-step solar thermochemical syngas production [J].
Falter, Christoph P. ;
Pitz-Paal, Robert .
APPLIED THERMAL ENGINEERING, 2018, 132 :613-623