NEW ERROR ESTIMATES FOR LINEAR TRIANGLE FINITE ELEMENTS IN THE STEKLOV EIGENVALUE PROBLEM

被引:0
作者
Bi, Hai [1 ]
Yang, Yidu [1 ]
Yu, Yuanyuan [1 ]
Han, Jiayu [1 ]
机构
[1] Guizhou Normal Univ, Sch Math Sci, Guiyang 550001, Guizhou, Peoples R China
基金
中国国家自然科学基金;
关键词
Steklov eigenvalue problem; Concave polygonal domain; Linear conforming finite element; Nonconforming Crouzeix-Raviart element; Error estimates; APPROXIMATION;
D O I
10.4208/jcm.1703-m2014-0188
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with the finite elements approximation for the Steklov eigenvalue problem on concave polygonal domain. We make full use of the regularity estimate and the characteristic of edge average interpolation operator of nonconforming Crouzeix-Raviart element, and prove a new and optimal error estimate in parallel to.parallel to(0,theta Omega) for the eigenfunction of linear conforming finite element and the nonconforming Crouzeix-Raviart element. Finally, we present some numerical results to support the theoretical analysis.
引用
收藏
页码:682 / 692
页数:11
相关论文
共 50 条
[41]   Error estimates of characteristic finite elements for bilinear convection-diffusion optimal control problems [J].
Hua, Yuchun ;
Tang, Yuelong .
RESULTS IN APPLIED MATHEMATICS, 2024, 22
[42]   Rayleigh-Ritz Majorization Error Bounds for the Linear Response Eigenvalue Problem [J].
Teng, Zhongming ;
Zhong, Hong-Xiu .
OPEN MATHEMATICS, 2019, 17 :653-667
[43]   Error estimates of finite volume method for Stokes optimal control problem [J].
Lan, Lin ;
Chen, Ri-hui ;
Wang, Xiao-dong ;
Ma, Chen-xia ;
Fu, Hao-nan .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2021, 2021 (01)
[44]   Some Error Estimates for the Finite Volume Element Method for a Parabolic Problem [J].
Chatzipantelidis, Panagiotis ;
Lazarov, Raytcho ;
Thomee, Vidar .
COMPUTATIONAL METHODS IN APPLIED MATHEMATICS, 2013, 13 (03) :251-279
[45]   A C0IPG method and its error estimates for the Helmholtz transmission eigenvalue problem [J].
Yang, Yidu ;
Bi, Hai ;
Li, Hao ;
Han, Jiayu .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2017, 326 :71-86
[46]   Error estimates of H1-Galerkin mixed finite element methods for nonlinear Parabolic problem [J].
Che Haitao .
MANUFACTURING SYSTEMS AND INDUSTRY APPLICATIONS, 2011, 267 :504-509
[47]   Finite element error estimates for an optimal control problem governed by the Burgers equation [J].
Pedro Merino .
Computational Optimization and Applications, 2016, 63 :793-824
[48]   Error estimates for the finite-element approximation of a semilinear elliptic control problem [J].
Casas, E ;
Tröltzsch, F .
CONTROL AND CYBERNETICS, 2002, 31 (03) :695-712
[49]   SOME ERROR ESTIMATES FOR THE LUMPED MASS FINITE ELEMENT METHOD FOR A PARABOLIC PROBLEM [J].
Chatzipantelidis, P. ;
Lazarov, R. D. ;
Thomee, V. .
MATHEMATICS OF COMPUTATION, 2012, 81 (277) :1-20
[50]   Finite element error estimates for an optimal control problem governed by the Burgers equation [J].
Merino, Pedro .
COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2016, 63 (03) :793-824