NEW ERROR ESTIMATES FOR LINEAR TRIANGLE FINITE ELEMENTS IN THE STEKLOV EIGENVALUE PROBLEM

被引:0
作者
Bi, Hai [1 ]
Yang, Yidu [1 ]
Yu, Yuanyuan [1 ]
Han, Jiayu [1 ]
机构
[1] Guizhou Normal Univ, Sch Math Sci, Guiyang 550001, Guizhou, Peoples R China
基金
中国国家自然科学基金;
关键词
Steklov eigenvalue problem; Concave polygonal domain; Linear conforming finite element; Nonconforming Crouzeix-Raviart element; Error estimates; APPROXIMATION;
D O I
10.4208/jcm.1703-m2014-0188
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with the finite elements approximation for the Steklov eigenvalue problem on concave polygonal domain. We make full use of the regularity estimate and the characteristic of edge average interpolation operator of nonconforming Crouzeix-Raviart element, and prove a new and optimal error estimate in parallel to.parallel to(0,theta Omega) for the eigenfunction of linear conforming finite element and the nonconforming Crouzeix-Raviart element. Finally, we present some numerical results to support the theoretical analysis.
引用
收藏
页码:682 / 692
页数:11
相关论文
共 50 条
[31]   A priori and a posteriori error estimates for the quad-curl eigenvalue problem [J].
Wang, Lixiu ;
Zhang, Qian ;
Sun, Jiguang ;
Zhang, Zhimin .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS, 2022, 56 (03) :1027-1051
[32]   A PRIORI ERROR ESTIMATES FOR FINITE ELEMENT DISCRETIZATIONS OF A SHAPE OPTIMIZATION PROBLEM [J].
Kiniger, Bernhard ;
Vexler, Boris .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2013, 47 (06) :1733-1763
[33]   Error estimates for a vorticity-based velocity-stress formulation of the Stokes eigenvalue problem [J].
Lepe, Felipe ;
Rivera, Gonzalo ;
Vellojin, Jesus .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2023, 420
[34]   A Note on the a posteriori error estimate of residual type of the Q1rot element for the Steklov eigenvalue problem [J].
Liu, Jie ;
Bi, Hai ;
Yang, Yidu .
2012 2ND INTERNATIONAL CONFERENCE ON APPLIED ROBOTICS FOR THE POWER INDUSTRY (CARPI), 2012, :785-789
[35]   A posteriori error estimates of higher-order finite elements for frictional contact problems [J].
Schroeder, Andreas .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2012, 249 :151-157
[36]   Convergence of Lagrange finite elements for the Maxwell eigenvalue problem in two dimensions [J].
Boffi, Daniele ;
Guzman, Johnny ;
Neilan, Michael .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2023, 43 (02) :663-691
[37]   A priori error estimates for the finite element approximation of an obstacle problem [J].
Cheon Seoung Ryoo .
Korean Journal of Computational and Applied Mathematics, 2000, 7 (1) :175-181
[38]   A new finite element approach for the Dirichlet eigenvalue problem [J].
Xiao, Wenqiang ;
Gong, Bo ;
Sun, Jiguang ;
Zhang, Zhimin .
APPLIED MATHEMATICS LETTERS, 2020, 105
[39]   An efficient finite element method based on dimension reduction scheme for a fourth-order Steklov eigenvalue problem [J].
Zhang, Hui ;
Liu, Zixin ;
Zhang, Jun .
OPEN MATHEMATICS, 2022, 20 (01) :666-681
[40]   ON THE INTERPOLATION ERROR ESTIMATES FOR Q1 QUADRILATERAL FINITE ELEMENTS [J].
Mao, Shipeng ;
Nicaise, Serge ;
Shi, Zhong-Ci .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2008, 47 (01) :467-486