NEW ERROR ESTIMATES FOR LINEAR TRIANGLE FINITE ELEMENTS IN THE STEKLOV EIGENVALUE PROBLEM

被引:0
作者
Bi, Hai [1 ]
Yang, Yidu [1 ]
Yu, Yuanyuan [1 ]
Han, Jiayu [1 ]
机构
[1] Guizhou Normal Univ, Sch Math Sci, Guiyang 550001, Guizhou, Peoples R China
基金
中国国家自然科学基金;
关键词
Steklov eigenvalue problem; Concave polygonal domain; Linear conforming finite element; Nonconforming Crouzeix-Raviart element; Error estimates; APPROXIMATION;
D O I
10.4208/jcm.1703-m2014-0188
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with the finite elements approximation for the Steklov eigenvalue problem on concave polygonal domain. We make full use of the regularity estimate and the characteristic of edge average interpolation operator of nonconforming Crouzeix-Raviart element, and prove a new and optimal error estimate in parallel to.parallel to(0,theta Omega) for the eigenfunction of linear conforming finite element and the nonconforming Crouzeix-Raviart element. Finally, we present some numerical results to support the theoretical analysis.
引用
收藏
页码:682 / 692
页数:11
相关论文
共 50 条
  • [21] A Posteriori Error Estimates for Maxwell's Eigenvalue Problem
    Boffi, Daniele
    Gastaldi, Lucia
    Rodriguez, Rodolfo
    Sebestova, Ivana
    JOURNAL OF SCIENTIFIC COMPUTING, 2019, 78 (02) : 1250 - 1271
  • [22] A Multilevel Correction Method for Steklov Eigenvalue Problem by Nonconforming Finite Element Methods
    Han, Xiaole
    Li, Yu
    Xie, Hehu
    NUMERICAL MATHEMATICS-THEORY METHODS AND APPLICATIONS, 2015, 8 (03) : 383 - 405
  • [23] An efficient spectral-Galerkin method for a new Steklov eigenvalue problem in inverse scattering
    Ren, Shixian
    Zhang, Yu
    Wang, Ziqiang
    AIMS MATHEMATICS, 2022, 7 (05): : 7528 - 7551
  • [24] Spectral Galerkin approximation and rigorous error analysis for the Steklov eigenvalue problem in circular domain
    Tan, Ting
    An, Jing
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2018, 41 (10) : 3764 - 3778
  • [25] A multigrid correction scheme for a new Steklov eigenvalue problem in inverse scattering
    Zhang, Yu
    Bi, Hai
    Yang, Yidu
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2020, 97 (07) : 1412 - 1430
  • [26] Nonconforming finite element approximations of the Steklov eigenvalue problem and its lower bound approximations
    Li, Qin
    Lin, Qun
    Xie, Hehu
    APPLICATIONS OF MATHEMATICS, 2013, 58 (02) : 129 - 151
  • [27] Nonconforming finite element approximations of the Steklov eigenvalue problem and its lower bound approximations
    Qin Li
    Qun Lin
    Hehu Xie
    Applications of Mathematics, 2013, 58 : 129 - 151
  • [28] A locking-free discontinuous Galerkin method for linear elastic Steklov eigenvalue problem
    Li, Yanjun
    Bi, Hai
    APPLIED NUMERICAL MATHEMATICS, 2023, 188 : 21 - 41
  • [29] Convergence analysis of two finite element methods for the modified Maxwell's Steklov eigenvalue problem
    Gong, Bo
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS, 2022, 56 (01) : 287 - 301
  • [30] New error estimates of nonconforming mixed finite element methods for the Stokes problem
    Li, Mingxia
    Mao, Shipeng
    Zhang, Shangyou
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2014, 37 (07) : 937 - 951