A Sensor Reduced Machine Learning Approach for Condition-based Energy Monitoring for Machine Tools

被引:9
|
作者
Sossenheimer, Johannes [1 ]
Walther, Jessica [1 ]
Fleddermann, Jan [1 ]
Abele, Eberhard [1 ]
机构
[1] Inst Prod Management Technol & Machine Tools PTW, Otto Berndt Str 2, D-64287 Darmstadt, Germany
关键词
energy monitoring; shop floor data; condition monitoring; energy transparency; CONSUMPTION; SIMULATION; EFFICIENCY; REDUCTION; FRAMEWORK; MODEL;
D O I
10.1016/j.procir.2019.03.157
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
With the ongoing digitalization of industrial production, innovative ways of creating energy transparency on the shop floor are emerging. This paper presents a sensor reduced approach to enable condition-based energy monitoring for different degrees of machine data availability. It differentiates between scenarios in which a wide range of machine data can be accessed and thus, machine learning approaches can be applied, and others in which only basic process information can be correlated to data from mobile power measurements. The presented approach is deployed and discussed for an EMAG machine tool in the ETA research factory at the Technische Universitat Darmstadt. (C) 2019 The Authors. Published by Elsevier Ltd.
引用
收藏
页码:570 / 575
页数:6
相关论文
共 50 条
  • [11] Predictive Maintenance and Condition Monitoring in Machine Tools: An IoT Approach
    Sicard, Brett
    Alsadi, Naseem
    Spachos, Petros
    Ziada, Youssef
    Gadsden, S. Andrew
    2022 IEEE INTERNATIONAL IOT, ELECTRONICS AND MECHATRONICS CONFERENCE (IEMTRONICS), 2022, : 117 - 125
  • [12] Monitoring the Condition of CNC Machine Tools
    Tugengol’d A.K.
    Voloshin R.N.
    Dimitrov V.P.
    Borisova L.V.
    Yusupov A.R.
    Tugengol’d, A.K. (akt@yandex.ru); Voloshin, R.N. (r.voloshin2909@gmail.com); Dimitrov, V.P. (dimitrow@mail.ru); Borisova, L.V. (borisovalv09@mail.ru); Yusupov, A.R. (sthedgehog@icloud.com), 1600, Pleiades journals (40): : 763 - 767
  • [13] CONDITION MONITORING OF MACHINE-TOOLS
    HARRIS, CG
    WILLIAMS, JH
    DAVIES, A
    INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH, 1989, 27 (09) : 1445 - 1464
  • [14] Prognostic Model Development with Missing LabelsA Condition-Based Maintenance Approach Using Machine Learning
    Patrick Zschech
    Kai Heinrich
    Raphael Bink
    Janis S. Neufeld
    Business & Information Systems Engineering, 2019, 61 : 327 - 343
  • [15] A machine learning approach for the condition monitoring of rotating machinery
    Dimitrios Kateris
    Dimitrios Moshou
    Xanthoula-Eirini Pantazi
    Ioannis Gravalos
    Nader Sawalhi
    Spiros Loutridis
    Journal of Mechanical Science and Technology, 2014, 28 : 61 - 71
  • [16] Prognostic Model Development with Missing Labels: A Condition-Based Maintenance Approach Using Machine Learning
    Zschech, Patrick
    Heinrich, Kai
    Bink, Raphael
    Neufeld, Janis S.
    BUSINESS & INFORMATION SYSTEMS ENGINEERING, 2019, 61 (03) : 327 - 343
  • [17] A machine learning approach for the condition monitoring of rotating machinery
    Kateris, Dimitrios
    Moshou, Dimitrios
    Pantazi, Xanthoula-Eirini
    Gravalos, Ioannis
    Sawalhi, Nader
    Loutridis, Spiros
    JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY, 2014, 28 (01) : 61 - 71
  • [18] Condition-based maintenance using machine learning and role of interpretability: a review
    Jeetesh Sharma
    Murari Lal Mittal
    Gunjan Soni
    International Journal of System Assurance Engineering and Management, 2024, 15 : 1345 - 1360
  • [19] Privacy-preserving condition-based forecasting using machine learning
    Taigel F.
    Tueno A.K.
    Pibernik R.
    Journal of Business Economics, 2018, 88 (5) : 563 - 592
  • [20] Condition-based maintenance using machine learning and role of interpretability: a review
    Sharma, Jeetesh
    Mittal, Murari Lal
    Soni, Gunjan
    INTERNATIONAL JOURNAL OF SYSTEM ASSURANCE ENGINEERING AND MANAGEMENT, 2024, 15 (04) : 1345 - 1360