Growth response of the salt-sensitive and the salt-tolerant sugarcane genotypes to potassium nutrition under salt stress

被引:13
|
作者
Ashraf, Muhammad [1 ]
Afzal, Muhammad [1 ]
Ahmad, Rashid [2 ]
Maqsood, Muhammad A. [3 ]
Shahzad, Sher M. [1 ]
Tahir, Mukkram A. [1 ]
Akhtar, Naeem [1 ]
Aziz, Ahsan [1 ]
机构
[1] Univ Sargodha, Dept Soil & Environm Sci, Univ Coll Agr, Sargodha, Pakistan
[2] Univ Agr Faisalabad, Dept Crop Physiol, Faisalabad, Pakistan
[3] Univ Agr Faisalabad, Inst Soil & Environm Sci, Faisalabad, Pakistan
关键词
cane yield; genotypes; juice quality; potassium; salt stress; sugarcane; SALINITY TOLERANCE; MINERAL-NUTRITION; SODIUM-CHLORIDE; TOMATO; SILICON; CALCIUM; YIELD; ACCUMULATION; PLANTS;
D O I
10.1080/03650340.2010.529609
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Adequate regulation of mineral nutrients plays a fundamental role in sustaining crop productivity and quality under salt stress. We investigated the ameliorative role of potassium (K as K2SO4) in overcoming the detrimental effects of sodium chloride (NaCl) on sugarcane genotypes differing in salt tolerance. Four levels of NaCl (0, 100, 130 and 160 mM) were imposed in triplicate on plants grown in gravel by supplying 0 and 3 mM K. The results revealed that application of NaCl significantly (p <= 0.05) increased sodium (Na+) but decreased K+ concentrations in shoots and roots of both genotypes with a resultant decrease in K+/Na+ ratios. Physical growth parameters and juice quality were also markedly reduced with increasing NaCl concentrations compared with controls. However, addition of K alleviated the deleterious effects of NaCl and improved plant growth under salt stress. Cane yield and yield attributes of both genotypes were significantly (p <= 0.05) higher where K was added. Juice quality was also significantly (p <= 0.05) improved with the application of K at various NaCl levels. The results suggested that added K interfered with Na+, reduced its uptake and accumulation in plant tissues and consequently improved plant growth and juice quality in sugarcane.
引用
收藏
页码:385 / 398
页数:14
相关论文
共 50 条
  • [1] Growth and physiological response of salt-sensitive and salt-tolerant rootstocks of citrus to paclobutrazol under salt stress
    Dubey, A. K.
    Srivastav, Manish
    Singh, A. K.
    Pandey, R. N.
    INDIAN JOURNAL OF AGRICULTURAL SCIENCES, 2009, 79 (08): : 595 - 599
  • [2] Growth Response to Ionic and Osmotic Stress of NaCl in Salt-tolerant and Salt-sensitive Maize
    Zhao, Ke-Fu
    Song, Jie
    Fan, Hai
    Zhou, San
    Zhao, Meng
    JOURNAL OF INTEGRATIVE PLANT BIOLOGY, 2010, 52 (05) : 468 - 475
  • [4] ANTIOXIDANT RESPONSE TO NACL STRESS IN SALT-TOLERANT AND SALT-SENSITIVE CULTIVARS OF COTTON
    GOSSETT, DR
    MILLHOLLON, EP
    LUCAS, MC
    CROP SCIENCE, 1994, 34 (03) : 706 - 714
  • [5] Alleviation of detrimental effects of NaCl by silicon nutrition in salt-sensitive and salt-tolerant genotypes of sugarcane (Saccharum officinarum L.)
    M. Ashraf
    M. Rahmatullah
    R. Afzal
    F. Ahmed
    A. Mujeeb
    L. Sarwar
    Plant and Soil, 2010, 326 : 381 - 391
  • [6] Alleviation of detrimental effects of NaCl by silicon nutrition in salt-sensitive and salt-tolerant genotypes of sugarcane (Saccharum officinarum L.)
    Ashraf, M.
    Rahmatullah
    Afzal, M.
    Ahmed, R.
    Mujeeb, F.
    Sarwar, A.
    Ali, L.
    PLANT AND SOIL, 2010, 326 (1-2) : 381 - 391
  • [7] Dissecting the osmotic and oxidative stress responses in salt-tolerant and salt-sensitive wheat genotypes under saline conditions
    Ibrahimova, Ulkar
    Talai, Javanshir
    Hasan, Md. mahadi
    Huseynova, Irada
    Raja, Vaseem
    Rastogi, Anshu
    Ghaffari, Hamideh
    Zivcak, Marek
    Yang, Xinghong
    Brestic, Marian
    PLANT SOIL AND ENVIRONMENT, 2025, 71 (01) : 36 - 47
  • [8] Ion distribution in leaves of salt-tolerant and salt-sensitive lines of spring wheat under salt stress
    Ashraf, M
    OLeary, JW
    ACTA BOTANICA NEERLANDICA, 1997, 46 (02): : 207 - 217
  • [9] Effect of salt stress on antioxidative enzymes and lipid peroxidation in leaves and roots of salt-tolerant and salt-sensitive maize genotypes
    Neto, ADD
    Prisco, JT
    Enéas, J
    de Abreu, CEB
    Gomes, E
    ENVIRONMENTAL AND EXPERIMENTAL BOTANY, 2006, 56 (01) : 87 - 94
  • [10] Anti-oxidative responses of salt-tolerant and salt-sensitive pepper (Capsicum annuum L.) genotypes grown under salt stress
    Aktas, H.
    Abak, K.
    Eker, S.
    JOURNAL OF HORTICULTURAL SCIENCE & BIOTECHNOLOGY, 2012, 87 (04): : 360 - 366