Facile CO2 Separation in Composite Membranes

被引:46
作者
Saqib, Sidra [1 ]
Rafiq, Sikander [1 ]
Chawla, Muhammad [1 ]
Saeed, Muhammad [2 ]
Muhammad, Nawshad [3 ]
Khurram, Shahzad [1 ]
Majeed, Khaliq [1 ]
Khan, Asim Laeeq [1 ]
Ghauri, Moinuddin [1 ]
Jamil, Farrukh [1 ]
Aslam, Muhammad [1 ]
机构
[1] COMSATS Univ Islamabad, Dept Chem Engn, Def Rd,Raiwind Rd, Lahore 54000, Pakistan
[2] Univ Oslo UIO, Dept Oral Biol, Electron Microscopy Lab, N-0316 Oslo, Norway
[3] COMSATS Univ Islamabad, IRCBM, Def Rd,Raiwind Rd, Lahore 54000, Pakistan
关键词
CO2; separation; Composite membranes; Metal-organic frameworks; Mixed-matrix membranes; MIXED-MATRIX MEMBRANES; IONIC LIQUID-MEMBRANES; METAL-ORGANIC FRAMEWORKS; GAS PERMEATION PROPERTIES; BROMINATED POLY(2,6-DIPHENYL-1,4-PHENYLENE OXIDE); FACILITATED TRANSPORT MEMBRANE; INORGANIC POLYMER HYBRIDS; NANOCOMPOSITE MEMBRANES; NATURAL-GAS; CARBON-DIOXIDE;
D O I
10.1002/ceat.201700653
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
CO2 emission from anthropogenic sources has raised worldwide environmental concerns and hence proficient energy paradigm has tilted towards CO2 capture. Membrane technology is one of the efficient technologies for CO2 separation since it is environmentally friendly, inexpensive, and offers high surface areas. Various approaches are discussed to improve membrane performance focusing mainly on permeability and selectivity parameters. Different types of fillers are incorporated to reach the Robeson's upper bound curve. In this review, polymer-inorganic nanocomposite membranes for the separation of CO2, CH4, and N-2 from various gas mixtures are comprehensively discussed. Metal organic frameworks (MOFs) and ionic liquid (ILs) mixed-matrix membranes are also considered.
引用
收藏
页码:30 / 44
页数:15
相关论文
共 150 条
[1]   Emerging CO2 capture systems [J].
Abanades, J. C. ;
Arias, B. ;
Lyngfelt, A. ;
Mattisson, T. ;
Wiley, D. E. ;
Li, H. ;
Ho, M. T. ;
Mangano, E. ;
Brandani, S. .
INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL, 2015, 40 :126-166
[2]   Opportunities and challenges of MOF-based membranes in gas separations [J].
Adatoz, Elda ;
Avci, Ahmet K. ;
Keskin, Seda .
SEPARATION AND PURIFICATION TECHNOLOGY, 2015, 152 :207-237
[3]   Polyvinyl acetate/titanium dioxide nanocomposite membranes for gas separation [J].
Ahmad, Jamil ;
Hagg, May Britt .
JOURNAL OF MEMBRANE SCIENCE, 2013, 445 :200-210
[4]   Influence of TiO2 on the Chemical, Mechanical, and Gas Separation Properties of Polyvinyl Alcohol-Titanium Dioxide (PVA-TiO2) Nanocomposite Membranes [J].
Ahmad, Jamil ;
Deshmukh, Kalim ;
Hagg, May Britt .
INTERNATIONAL JOURNAL OF POLYMER ANALYSIS AND CHARACTERIZATION, 2013, 18 (04) :287-296
[5]   Poly sulfone/silica nanoparticle mixed-matrix membranes for gas separation [J].
Ahn, Juhyeon ;
Chung, Wook-Jin ;
Pinnau, Ingo ;
Guiver, Michael D. .
JOURNAL OF MEMBRANE SCIENCE, 2008, 314 (1-2) :123-133
[6]   Separation performance of CO2 through Supported Magnetic Ionic Liquid Membranes (SMILMs) [J].
Albo, J. ;
Santos, E. ;
Neves, L. A. ;
Simeonov, S. P. ;
Afonso, C. A. M. ;
Crespo, J. G. ;
Irabien, A. .
SEPARATION AND PURIFICATION TECHNOLOGY, 2012, 97 :26-33
[7]   Effect of the structural constituents of metal organic frameworks on carbon dioxide capture [J].
Andirova, Dinara ;
Cogswell, Christopher F. ;
Lei, Yu ;
Choi, Sunho .
MICROPOROUS AND MESOPOROUS MATERIALS, 2016, 219 :276-305
[8]  
[Anonymous], 2001, J MEMBRANE SCI, DOI DOI 10.1016/S0376-7388(01)00514-2
[9]   Mass transfer studies of high performance structured packing for CO2 separation processes [J].
Aroonwilas, A ;
Tontiwachwuthikul, P .
ENERGY CONVERSION AND MANAGEMENT, 1997, 38 :S75-S80
[10]   Storage and separation of CO2 and CH4 in silicalite, C168 schwarzite, and IRMOF-1:: A comparative study from monte carlo simulation [J].
Babarao, Ravichandar ;
Hu, Zhongqiao ;
Jiang, Jianwen ;
Chempath, Shaji ;
Sandler, Stanley I. .
LANGMUIR, 2007, 23 (02) :659-666