ACFNet: Attentional Class Feature Network for Semantic Segmentation

被引:269
作者
Zhang, Fan [1 ,2 ,3 ]
Chen, Yanqin [3 ]
Li, Zhihang [2 ]
Hong, Zhibin [3 ]
Liu, Jingtuo [3 ]
Ma, Feifei [1 ,2 ]
Han, Junyu [3 ]
Ding, Errui [3 ]
机构
[1] Chinese Acad Sci, Inst Software, Lab Parallel Software & Computat Sci, Beijing, Peoples R China
[2] Univ Chinese Acad Sci, Beijing, Peoples R China
[3] Baidu Inc, Beijing, Peoples R China
来源
2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019) | 2019年
关键词
D O I
10.1109/ICCV.2019.00690
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Recent works have made great progress in semantic segmentation by exploiting richer context, most of which are designed from a spatial perspective. In contrast to previous works, we present the concept of class center which extracts the global context from a categorical perspective. This class-level context describes the overall representation of each class in an image. We further propose a novel module, named Attentional Class Feature (ACF) module, to calculate and adaptively combine different class centers according to each pixel. Based on the ACF module, we introduce a coarse-to-fine segmentation network, called Attentional Class Feature Network (ACFNet), which can be composed of an ACF module and any off-the-shell segmentation network (base network). In this paper, we use two types of base networks to evaluate the effectiveness of ACFNet. We achieve new state-of-the-art performance of 81.85% mIoU on Cityscapes dataset with only finely annotated data used for training.
引用
收藏
页码:6797 / 6806
页数:10
相关论文
共 49 条
[1]   A coarse-to-fine strategy for multiclass shape detection [J].
Amit, Y ;
Geman, D ;
Fan, XD .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2004, 26 (12) :1606-1621
[2]  
[Anonymous], 2016, ARXIV160404339
[3]  
[Anonymous], 2018, CVPR
[4]   SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation [J].
Badrinarayanan, Vijay ;
Kendall, Alex ;
Cipolla, Roberto .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2017, 39 (12) :2481-2495
[5]  
Berg A.C., 2015, ARXIV150604579
[6]   High accuracy optical flow estimation based on a theory for warping [J].
Brox, T ;
Bruhn, A ;
Papenberg, N ;
Weickert, J .
COMPUTER VISION - ECCV 2004, PT 4, 2004, 2034 :25-36
[7]   In-Place Activated BatchNorm for Memory-Optimized Training of DNNs [J].
Bulo, Samuel Rota ;
Porzi, Lorenzo ;
Kontschieder, Peter .
2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, :5639-5647
[8]  
BYEON W, 2015, PROC CVPR IEEE, P3547, DOI DOI 10.1109/CVPR.2015.7298977
[9]   Dense and Low-Rank Gaussian CRFs Using Deep Embeddings [J].
Chandra, Siddhartha ;
Usunier, Nicolas ;
Kokkinos, Iasonas .
2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2017, :5113-5122
[10]  
Chen LC, 2014, ARXIV