On Oscillation of a Certain Class of Third-Order Nonlinear Functional Dynamic Equations on Time Scales

被引:0
|
作者
Saker, S. H. [1 ]
机构
[1] King Saud Univ, Coll Sci Res Ctr, Riyadh 11451, Saudi Arabia
来源
BULLETIN MATHEMATIQUE DE LA SOCIETE DES SCIENCES MATHEMATIQUES DE ROUMANIE | 2011年 / 54卷 / 04期
关键词
Oscillation; third-order dynamic equations; time scales; ASYMPTOTIC-BEHAVIOR; CRITERIA;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we establish some new sufficient conditions for oscillation of the third order nonlinear functional dynamic equation [p(t)[(r(t)x(Delta)(t))(Delta)]](Delta) + q(t) f (x(tau(t))) = 0, for t is an element of [t(0), infinity)tau, on a time scale T, where gamma > 0 is the quotient of odd positive integers, p, q, r and T are positive rd-continuous functions defined on T and f is an element of C(R,R), uf (u) > 0 and f(u)/u(gamma) >= K > 0, for u not equal 0. The results provided substantial improvement over those obtained by Yu and Wang [J. Comp. App!. Math. 225 (2009), 531-540) and Hassan [Oscillation of third order nonlinear delay dynamic equations on time scales, Math. Comp. Modelling 49 (2009), 1573-1586], in the sense that, our results can be applied when 0 < gamma < 1, (tau o sigma) (t) not equal (sigma o tau) (t), and do not require that integral(infinity)(t0) q(t)Delta t = infinity. Some examples illustrating the main results are given.
引用
收藏
页码:365 / 389
页数:25
相关论文
共 50 条
  • [1] OSCILLATION OF THIRD-ORDER NONLINEAR NEUTRAL FUNCTIONAL DYNAMIC EQUATIONS ON TIME SCALES
    Saker, S. H.
    Graef, John R.
    DYNAMIC SYSTEMS AND APPLICATIONS, 2012, 21 (04): : 583 - 606
  • [2] Oscillation of third-order functional dynamic equations on time scales
    SAKER Samir H.
    Science China Mathematics, 2011, (12) : 2597 - 2614
  • [3] Oscillation of third-order functional dynamic equations on time scales
    Samir H. Saker
    Science China Mathematics, 2011, 54 : 2597 - 2614
  • [4] Oscillation of third-order functional dynamic equations on time scales
    SAKER Samir H.
    Science China(Mathematics), 2011, 54 (12) : 2597 - 2614
  • [5] Oscillation of third-order functional dynamic equations on time scales
    Saker, Samir H.
    SCIENCE CHINA-MATHEMATICS, 2011, 54 (12) : 2597 - 2614
  • [6] Oscillation for third-order nonlinear delay dynamic equations on time scales
    Liu, Shouhua
    Zhang, Quanxin
    Gao, Li
    SENSORS, MEASUREMENT AND INTELLIGENT MATERIALS II, PTS 1 AND 2, 2014, 475-476 : 1578 - 1582
  • [7] Oscillation criteria for certain third-order variable delay functional dynamic equations on time scales
    Yang J.
    Journal of Applied Mathematics and Computing, 2013, 43 (1-2) : 445 - 466
  • [8] Oscillation of third order nonlinear functional dynamic equations on time scales
    Erbe L.
    Hassan T.S.
    Peterson A.
    Differential Equations and Dynamical Systems, 2010, 18 (1-2) : 199 - 227
  • [9] Oscillation results of third-order nonlinear dynamic equations with damping on time scales
    Tugla, Emine
    Topal, Fatma Serap
    CONTRIBUTIONS TO MATHEMATICS, 2022, 6 : 30 - 38
  • [10] Oscillation of Solutions to Third-Order Nonlinear Neutral Dynamic Equations on Time Scales
    Qiu, Yang-Cong
    Chiu, Kuo-Shou
    Grace, Said R.
    Liu, Qingmin
    Jadlovska, Irena
    MATHEMATICS, 2022, 10 (01)