Analysis of Output Ripple Shape and Amplitude in Chopper Instrumentation Amplifier

被引:6
作者
Lin, Tsz Ngai [1 ]
Wang, Bo [1 ]
Bermak, Amine [1 ]
机构
[1] Hamad Bin Khalifa Univ, Coll Sci & Engn, Div Informat & Comp Technol, Doha, Qatar
关键词
Shape; Instruments; Resistors; Choppers (circuits); Transconductance; Estimation; Circuits and systems; Capacitively-coupled chopper-based instrumentation amplifier; CCIA; chopper; instrumentation amplifier; ripple formation; ripple shape; ripple reduction; CMOS;
D O I
10.1109/TCSII.2021.3098225
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this brief, we analyzed the output ripple in a capacitively-coupled chopper-based instrumentation amplifier (CCIA). Our analysis found that the shape and amplitude of the output ripple of the CCIA are determined by five design parameters, namely amplifier offset, transconductance, chopping frequency, Miller compensation capacitance, and the nulling resistor. With different design specifications, the CCIA ripple appears in four different shapes, including triangular ripple, RC-settling ripple, square ripple, and step-change ripple. These findings are verified by the silicon results. As the cause of each ripple shape varies, this analysis serves as a guideline for designing practical chopper-based amplifiers and their corresponding ripple reduction techniques.
引用
收藏
页码:299 / 303
页数:5
相关论文
共 13 条
[1]   A micropower chopper-stabilized operational amplifier using a SC notch filter with synchronous integration inside the continuous-time signal path [J].
Burt, Rod ;
Zhang, Joy .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2006, 41 (12) :2729-2736
[2]   A High Dynamic-Range Neural Recording Chopper Amplifier for Simultaneous Neural Recording and Stimulation [J].
Chandrakumar, Hariprasad ;
Markovic, Dejan .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2017, 52 (03) :645-656
[3]   A Simple Area-Efficient Ripple-Rejection Technique for Chopped Biosignal Amplifiers [J].
Chandrakumar, Hariprasad ;
Markovic, Dejan .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2015, 62 (02) :189-193
[4]   Circuit techniques for reducing the effects of op-amp imperfections: Autozeroing, correlated double sampling, and chopper stabilization [J].
Enz, CC ;
Temes, GC .
PROCEEDINGS OF THE IEEE, 1996, 84 (11) :1584-1614
[5]   A 21 nV/√Hz Chopper-Stabilized Multi-Path Current-Feedback Instrumentation Amplifier With 2 μV Offset [J].
Fan, Qinwen ;
Huijsing, Johan H. ;
Makinwa, Kofi A. A. .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2012, 47 (02) :464-475
[6]   A 1.8 μW 60 nV/√Hz Capacitively-Coupled Chopper Instrumentation Amplifier in 65 nm CMOS for Wireless Sensor Nodes [J].
Fan, Qinwen ;
Sebastiano, Fabio ;
Huijsing, Johan H. ;
Makinwa, Kofi A. A. .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2011, 46 (07) :1534-1543
[7]  
Fang L, 2020, IEEE CUST INTEGR CIR
[8]   Auto Correction Feedback for Ripple Suppression in a Chopper Amplifier [J].
Kusuda, Yoshinori .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2010, 45 (08) :1436-1445
[9]  
Lin T. N., 2020, 2020 IEEE INT S CIRC, P1
[10]   A compensation strategy for two-stage CMOS opamps based on current buffer [J].
Palmisano, G ;
Palumbo, G .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-FUNDAMENTAL THEORY AND APPLICATIONS, 1997, 44 (03) :257-262