Fermi gas with attractive potential and arbitrary spin in a one-dimensional trap: Phase diagram for S=3/2, 5/2, 7/2, and 9/2

被引:12
|
作者
Schlottmann, P. [1 ]
Zvyagin, A. A. [2 ,3 ]
机构
[1] Florida State Univ, Dept Phys, Tallahassee, FL 32306 USA
[2] Ukrainian Natl Acad Sci, BI Verkin Inst Low Temp Phys & Engn, UA-61103 Kharkov, Ukraine
[3] Max Planck Inst Phys Komplexer Syst, DE-01187 Dresden, Germany
关键词
MANY-BODY PROBLEM; GROUND-STATE; MIXED-VALENT; BETHE-ANSATZ; THERMODYNAMICS; MODEL; SUPERFLUIDITY; EXCITATIONS; IMPURITY; CHAIN;
D O I
10.1103/PhysRevB.85.024535
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A gas of ultracold Li-6 atoms (effective spin 1/2) confined to an elongated trap with one-dimensional properties is a candidate to display three different phases: (i) fermions bound in Cooper-pair-like states, (ii) unbound spin-polarized particles, and (iii) a mixed phase in which Cooper bound states and unpaired particles coexist. It is of great interest to extend these studies to fermionic atoms with higher spin, e. g., for neutral K-40, Ca-43, Sr-87, or Yb-173 atoms. Within the grand-canonical ensemble, we investigated the mu versus H phase diagram (mu is the chemical potential and H the external magnetic field) for S = 3/2, ... , 9/2 for the ground state using the exact Bethe ansatz solution of the one-dimensional Fermi gas with an attractive delta-function interaction potential. There are N = 2S + 1 fundamental states: the particles can be either unpaired or clustered in bound states of 2, 3,..., 2S, and 2S + 1 fermions. The rich phase diagram consists of these N states and various mixed phases in which combinations of the fundamental states coexist. Bound states of N fermions are not favorable in high magnetic fields, but always present if the field is low. For S = 3/2, possible scenarios for phase separation are explored within the local density approximation. For S = 3/2, the phase diagram for the superposition of a Zeeman and a quadrupolar splitting is also discussed.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] The electronic structure and spin-charge separation of one-dimensional SrCuO2
    Zhao, Huaisong
    Qian, Jiasheng
    Xu, Sheng
    Yuan, Feng
    MODERN PHYSICS LETTERS B, 2019, 33 (02):
  • [32] Theory of Raman Scattering in One-Dimensional Quantum Spin-1/2 Antiferromagnets
    Sato, Masahiro
    Katsura, Hosho
    Nagaosa, Naoto
    PHYSICAL REVIEW LETTERS, 2012, 108 (23)
  • [33] Phase diagram of the mixed spin-2 and spin-5/2 Ising system with two different single-ion anisotropies
    da Cruz Filho, J. S.
    Godoy, M.
    de Arruda, A. S.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2013, 392 (24) : 6247 - 6254
  • [34] Phase diagram of the anisotropic frustrated spin-one J1-J2-J3 ferromagnet
    Pires, A. S. T.
    SOLID STATE COMMUNICATIONS, 2015, 209 : 18 - 22
  • [35] Magnetic structure of the quasi-one-dimensional frustrated antiferromagnet LiCu2O2 with Spin S=1/2
    Svistov, L. E.
    Prozorova, L. A.
    Farutin, A. M.
    Gippius, A. A.
    Okhotnikov, K. S.
    Bush, A. A.
    Kamentsev, K. E.
    Tishchenko, E. A.
    JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS, 2009, 108 (06) : 1000 - 1009
  • [36] Enhancement of Thermal Conductivity due to Spinons in the One-Dimensional Spin System SrCuO2
    Kawamata, T.
    Kaneko, N.
    Uesaka, M.
    Sato, M.
    Koike, Y.
    INTERNATIONAL CONFERENCE ON MAGNETISM (ICM 2009), 2010, 200
  • [37] Phase Diagram and Quantum Entanglement Properties of a Pentamer S=1/2 Heisenberg Spin Cluster
    Szalowski, Karol
    MOLECULES, 2023, 28 (17):
  • [38] Magnetic phase diagram of the S=1/2 antiferromagnetic zigzag spin chain in the strongly frustrated region:: Cusp and plateau
    Okunishi, K
    Tonegawa, T
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2003, 72 (03) : 479 - 482
  • [39] One-dimensional γ-Al2O3 growth from the oxidation of NiAl
    Zhu, Dingding
    Wang, Xinli
    Jia, Peng
    Cai, Canying
    Huang, Jianyu
    Zhou, Guangwen
    CORROSION SCIENCE, 2023, 216
  • [40] Boundary logarithmic corrections to the dynamical correlation functions of one-dimensional spin-1/2 chains
    Schneider, Imke
    Mandal, Ipsita
    Matveeva, Polina
    Strassel, Dominik
    Eggert, Sebastian
    PHYSICAL REVIEW B, 2022, 106 (15)