Wiener-Hopf optimal control of a hydraulic canal prototype with fractional order dynamics

被引:6
作者
Feliu-Batlle, Vicente [1 ]
Feliu-Talegon, Daniel [2 ]
San-Millan, Andres [2 ]
Rivas-Perez, Raul [3 ]
机构
[1] Univ Castilla La Mancha, Escuela Tecn Super Ingenieros Ind, Ave Camilo Jose Cela S-N, E-13071 Ciudad Real, Spain
[2] Inst Invest Energet & Aplicac Ind INEI, Campus Univ Ciudad Real, Ciudad Real 13071, Spain
[3] Havana Technol Univ CUJAE, Dept Automat Control & Comp Sci, Calle 114,11901, Marianao 19390, La Habana, Cuba
关键词
Wiener-Hopi filter; Fractional order control; Hydraulic canal control; ISE optimization; Gain scheduling control; MODEL-PREDICTIVE CONTROL; SYSTEM-IDENTIFICATION; WATER DISTRIBUTION; SMITH PREDICTOR; PID CONTROLLERS; ROBUST-CONTROL; 1ST POOL; IRRIGATION; MANAGEMENT; STABILITY;
D O I
10.1016/j.isatra.2017.06.012
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This article addresses the control of a laboratory hydraulic canal prototype that has fractional order dynamics and a time delay. Controlling this prototype is relevant since its dynamics closely resembles the dynamics of real main irrigation canals. Moreover, the dynamics of hydraulic canals vary largely when the operation regime changes since they are strongly nonlinear systems. All this makes difficult to design adequate controllers. The controller proposed in this article looks for a good time response to step commands. The design criterium for this controller is minimizing the integral performance index ISE. Then a new methodology to control fractional order processes with a time delay, based on the Wiener-Hopf control and the Pade approximation of the time delay, is developed. Moreover, in order to improve the robustness of the control system, a gain scheduling fractional order controller is proposed. Experiments show the adequate performance of the proposed controller. (C) 2017 ISA. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:130 / 144
页数:15
相关论文
共 50 条
[21]   Tuning fractional order proportional integral controllers for fractional order systems [J].
Luo, Ying ;
Chen, Yang Quan ;
Wang, Chun Yang ;
Pi, You Guo .
JOURNAL OF PROCESS CONTROL, 2010, 20 (07) :823-831
[22]   New tuning rules for fractional PIα controllers [J].
Maione, G. ;
Lino, P. .
NONLINEAR DYNAMICS, 2007, 49 (1-2) :251-257
[23]  
Malaterre PO, 1998, IEEE SYS MAN CYBERN, P3850, DOI 10.1109/ICSMC.1998.726688
[24]   Classification of canal control algorithms [J].
Malaterre, PO ;
Rogers, DC ;
Schuurmans, J .
JOURNAL OF IRRIGATION AND DRAINAGE ENGINEERING, 1998, 124 (01) :3-10
[25]  
Martinez Ruben, 2009, IECON 2009 - 35th Annual Conference of IEEE Industrial Electronics (IECON 2009), P1615, DOI 10.1109/IECON.2009.5414757
[26]   An LPV Fractional Model for Canal Control [J].
Martinez-Gonzalez, Ruben ;
Bolea, Yolanda ;
Grau, Antoni ;
Martinez-Garcia, Herminio .
MATHEMATICAL PROBLEMS IN ENGINEERING, 2009, 2009
[27]   Tuning and auto-tuning of fractional order controllers for industry applications [J].
Monje, Concepcion A. ;
Vinagre, Blas M. ;
Feliu, Vicente ;
Chen, YangQuan .
CONTROL ENGINEERING PRACTICE, 2008, 16 (07) :798-812
[28]  
Monje CA, 2010, ADV IND CONTROL, P3, DOI 10.1007/978-1-84996-335-0
[29]  
O'Dwyer A., 2003, Handbook of PI and PID controller tuning rules
[30]  
Oustaloup A., 1991, La Commande CRONE: Commande Robuste dOrdre Non Entier