Sensitivity of dendrite maps

被引:1
作者
Shi, Enhui [1 ]
Wang, Suhua [2 ]
Di, Yan [1 ]
机构
[1] Soochow Univ, Dept Math, Suzhou 215006, Jiangsu, Peoples R China
[2] Jiangsu Univ Sci & Technol, Zhangjiagang Campus, Zhangjiagang 215600, Jiangsu, Peoples R China
关键词
Dendrite; Sensitivity; Topological entropy; Topological transitivity; DEVANEYS CHAOS; ENTROPY; DEPTH;
D O I
10.1016/j.jmaa.2016.09.020
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Suppose that X is a dendrite and f : X -> X is a sensitive continuous map. We show that (a) (X, f) contains a bilaterally transitive subsystem with nonempty interior; (b) the system (X, f) satisfies only one of the following two conditions: (b1) (X, f) contains a topologically transitive subsystem with nonempty interior; (b2) there exists an f-invariant nowhere dense closed subset A of X such that the attraction basin Basin(A, f) contains a residual subset B of an open set and the strong attraction basin Sbasin(A, f) is dense in B; (c) if X is completely regular, then (X, f) contains a relatively strongly mixing subsystem with nonempty interior, dense periodic points and positive topological entropy. Unlike for interval maps, we construct a sensitive dendrite map with zero topological entropy. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:908 / 919
页数:12
相关论文
共 50 条
  • [1] Equicontinuity of dendrite maps
    Sun, Taixiang
    Chen, Zhanhe
    Liu, Xinhe
    Xi, Hongjian
    CHAOS SOLITONS & FRACTALS, 2014, 69 : 10 - 13
  • [2] Mobius disjointness conjecture for local dendrite maps
    El Abdalaoui, El Houcein
    Askri, Ghassen
    Marzougui, Habib
    NONLINEARITY, 2019, 32 (01) : 285 - 300
  • [3] DYNAMICS OF MONOTONE GRAPH, DENDRITE AND DENDROID MAPS
    Naghmouchi, Issam
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2011, 21 (11): : 3205 - 3215
  • [4] Equicontinuous local dendrite maps
    Salem, Aymen Haj
    Hattab, Hawete
    Rejeiba, Tarek
    APPLIED GENERAL TOPOLOGY, 2021, 22 (01): : 67 - 77
  • [5] The Depths and the Attracting Centres for Continuous Maps on a Dendrite Whose Rank is Finite
    Su, Guang Wang
    Han, Cai Hong
    Sun, Tai Xiang
    Li, Lue
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2022, 38 (09) : 1643 - 1652
  • [6] The Depths and the Attracting Centres for Continuous Maps on a Dendrite Whose Rank is Finite
    Guang Wang Su
    Cai Hong Han
    Tai Xiang Sun
    Lue Li
    Acta Mathematica Sinica, English Series, 2022, 38 : 1643 - 1652
  • [7] Recurrence and nonwandering sets of local dendrite maps
    Abdelli, Hafedh
    Marzougui, Habib
    Mchaalia, Amira
    JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2023, 29 (9-12) : 1323 - 1340
  • [8] On the existence of maximal ω-limit sets for dendrite maps
    Kocan, Zdenek
    Kurkova, Veronika
    Malek, Michal
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2012, 17 (08) : 3169 - 3176
  • [9] Invariant Sets for Monotone Local Dendrite Maps
    Abdelli, Hafedh
    Marzougui, Habib
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2016, 26 (09):
  • [10] Local dendrite maps without periodic points
    Abdelli, Hafedh
    Naghmouchi, Issam
    Rezgui, Houssem Eddine
    TOPOLOGY AND ITS APPLICATIONS, 2022, 305