Inverse problem for Zagreb indices

被引:29
|
作者
Yurttas, Aysun [1 ]
Togan, Muge [1 ]
Lokesha, Veerebradiah [2 ]
Cangul, Ismail Naci [1 ]
Gutman, Ivan [3 ]
机构
[1] Uludag Univ, Fac Arts & Sci, Dept Math, TR-16059 Gorukle, Bursa, Turkey
[2] Vijayanagara Sri Krishnadevaraya Univ, Dept Studies Math, Ballari, India
[3] Univ Kragujevac, Fac Sci, POB 60, Kragujevac 34000, Serbia
关键词
Zagreb index; First Zagreb index; Second Zagreb index; Forgotten index; Hyper-Zagreb index; Primary; 05C09; Secondary; 05C90; TOPOLOGICAL INDEXES;
D O I
10.1007/s10910-018-0970-x
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The inverse problem for integer-valued topological indices is about the existence of a graph having its index value equal to a given integer. We solve this problem for the first and second Zagreb indices, and present analogous results also for the forgotten and hyper-Zagreb index. The first Zagreb index of connected graphs can take any even positive integer value, except 4 and 8. The same is true if one restricts to trees or to molecular graphs. The second Zagreb index of connected graphs can take any positive integer value, except 2, 3, 5, 6, 7, 10, 11, 13, 15 and 17. The same is true if one restricts to trees or to molecular graphs.
引用
收藏
页码:609 / 615
页数:7
相关论文
共 50 条
  • [1] Inverse problem for Zagreb indices
    Aysun Yurtas
    Muge Togan
    Veerebradiah Lokesha
    Ismail Naci Cangul
    Ivan Gutman
    Journal of Mathematical Chemistry, 2019, 57 : 609 - 615
  • [2] On difference of Zagreb indices
    Furtula, Boris
    Gutman, Ivan
    Ediz, Suleyman
    DISCRETE APPLIED MATHEMATICS, 2014, 178 : 83 - 88
  • [3] Zagreb Indices and Multiplicative Zagreb Indices of Eulerian Graphs
    Liu, Jia-Bao
    Wang, Chunxiang
    Wang, Shaohui
    Wei, Bing
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2019, 42 (01) : 67 - 78
  • [4] New upper bounds on Zagreb indices
    Kinkar Ch. Das
    Ivan Gutman
    Bo Zhou
    Journal of Mathematical Chemistry, 2009, 46 : 514 - 521
  • [5] New upper bounds on Zagreb indices
    Das, Kinkar Ch.
    Gutman, Ivan
    Zhou, Bo
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2009, 46 (02) : 514 - 521
  • [6] Zagreb indices of graphs
    Kinkar Ch. Das
    Kexiang Xu
    Junki Nam
    Frontiers of Mathematics in China, 2015, 10 : 567 - 582
  • [7] Zagreb indices of graphs
    Das, Kinkar Ch
    Xu, Kexiang
    Nam, Junki
    FRONTIERS OF MATHEMATICS IN CHINA, 2015, 10 (03) : 567 - 582
  • [8] On the Zagreb indices equality
    Abdo, Hosam
    Dimitrov, Darko
    Gutman, Ivan
    DISCRETE APPLIED MATHEMATICS, 2012, 160 (1-2) : 1 - 8
  • [9] On Zagreb indices, Zagreb polynomials of some nanostar dendrimers
    Siddiqui, Muhammad Kamran
    Imran, Muhammad
    Ahmad, Ali
    APPLIED MATHEMATICS AND COMPUTATION, 2016, 280 : 132 - 139
  • [10] Computing Zagreb Indices and Zagreb Polynomials for Symmetrical Nanotubes
    Shao, Zehui
    Siddiqui, Muhammad Kamran
    Muhammad, Mehwish Hussain
    SYMMETRY-BASEL, 2018, 10 (07):