Network-Based Analysis to Identify Hub Genes Involved in Spatial Root Response to Mechanical Constrains

被引:2
作者
Dimitrova, Anastazija [1 ]
Sferra, Gabriella [1 ]
Scippa, Gabriella Stefania [1 ]
Trupiano, Dalila [1 ]
机构
[1] Univ Molise, Dept Biosci & Terr, I-86090 Pesche, Italy
关键词
poplar; functional enrichment analysis; proteomics; bending; gene ontologies; clusters; POPLAR WOODY ROOT; SIGNAL-TRANSDUCTION; PROTEOMIC ANALYSIS; STRESS; GROWTH; BIOSYNTHESIS; METABOLISM; ANNEXINS; PLANTS;
D O I
10.3390/cells11193121
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Previous studies report that the asymmetric response, observed along the main poplar woody bent root axis, was strongly related to both the type of mechanical forces (compression or tension) and the intensity of force displacement. Despite a large number of targets that have been proposed to trigger this asymmetry, an understanding of the comprehensive and synergistic effect of the antistress spatially related pathways is still lacking. Recent progress in the bioinformatics area has the potential to fill these gaps through the use of in silico studies, able to investigate biological functions and pathway overlaps, and to identify promising targets in plant responses. Presently, for the first time, a comprehensive network-based analysis of proteomic signatures was used to identify functions and pivotal genes involved in the coordinated signalling pathways and molecular activities that asymmetrically modulate the response of different bent poplar root sectors and sides. To accomplish this aim, 66 candidate proteins, differentially represented across the poplar bent root sides and sectors, were grouped according to their abundance profile patterns and mapped, together with their first neighbours, on a high-confidence set of interactions from STRING to compose specific cluster-related subnetworks (I-VI). Successively, all subnetworks were explored by a functional gene set enrichment analysis to identify enriched gene ontology terms. Subnetworks were then analysed to identify the genes that are strongly interconnected with other genes (hub gene) and, thus, those that have a pivotal role in the bent root asymmetric response. The analysis revealed novel information regarding the response coordination, communication, and potential signalling pathways asymmetrically activated along the main root axis, delegated mainly to Ca2+ (for new lateral root formation) and ROS (for gravitropic response and lignin accumulation) signatures. Furthermore, some of the data indicate that the concave side of the bent sector, where the mechanical forces are most intense, communicates to the other (neighbour and distant) sectors, inducing spatially related strategies to ensure water uptake and accompanying cell modification. This information could be critical for understanding how plants maintain and improve their structural integrity-whenever and wherever it is necessary-in natural mechanical stress conditions.
引用
收藏
页数:18
相关论文
共 83 条
  • [1] A systematic survey of centrality measures for protein-protein interaction networks
    Ashtiani, Minoo
    Salehzadeh-Yazdi, Ali
    Razaghi-Moghadam, Zahra
    Hennig, Holger
    Wolkenhauer, Olaf
    Mirzaie, Mehdi
    Jafari, Mohieddin
    [J]. BMC SYSTEMS BIOLOGY, 2018, 12
  • [2] Differential expression profiles of growth-related genes in the elongation zone of maize primary roots
    Bassani, M
    Neumann, PM
    Gepstein, S
    [J]. PLANT MOLECULAR BIOLOGY, 2004, 56 (03) : 367 - 380
  • [3] UniProt: the universal protein knowledgebase in 2021
    Bateman, Alex
    Martin, Maria-Jesus
    Orchard, Sandra
    Magrane, Michele
    Agivetova, Rahat
    Ahmad, Shadab
    Alpi, Emanuele
    Bowler-Barnett, Emily H.
    Britto, Ramona
    Bursteinas, Borisas
    Bye-A-Jee, Hema
    Coetzee, Ray
    Cukura, Austra
    Da Silva, Alan
    Denny, Paul
    Dogan, Tunca
    Ebenezer, ThankGod
    Fan, Jun
    Castro, Leyla Garcia
    Garmiri, Penelope
    Georghiou, George
    Gonzales, Leonardo
    Hatton-Ellis, Emma
    Hussein, Abdulrahman
    Ignatchenko, Alexandr
    Insana, Giuseppe
    Ishtiaq, Rizwan
    Jokinen, Petteri
    Joshi, Vishal
    Jyothi, Dushyanth
    Lock, Antonia
    Lopez, Rodrigo
    Luciani, Aurelien
    Luo, Jie
    Lussi, Yvonne
    Mac-Dougall, Alistair
    Madeira, Fabio
    Mahmoudy, Mahdi
    Menchi, Manuela
    Mishra, Alok
    Moulang, Katie
    Nightingale, Andrew
    Oliveira, Carla Susana
    Pundir, Sangya
    Qi, Guoying
    Raj, Shriya
    Rice, Daniel
    Lopez, Milagros Rodriguez
    Saidi, Rabie
    Sampson, Joseph
    [J]. NUCLEIC ACIDS RESEARCH, 2021, 49 (D1) : D480 - D489
  • [4] Analysis of 1.9 Mb of contiguous sequence from chromosome 4 of Arabidopsis thaliana
    Bevan, M
    Bancroft, I
    Bent, E
    Love, K
    Goodman, H
    Dean, C
    Bergkamp, R
    Dirkse, W
    Van Staveren, M
    Stiekema, W
    Drost, L
    Ridley, P
    Hudson, SA
    Patel, K
    Murphy, G
    Piffanelli, P
    Wedler, H
    Wedler, E
    Wambutt, R
    Weitzenegger, T
    Pohl, TM
    Terryn, N
    Gielen, J
    Villarroel, R
    De Clerck, R
    Van Montagu, M
    Lecharny, A
    Auborg, S
    Gy, I
    Kreis, M
    Lao, N
    Kavanagh, T
    Hempel, S
    Kotter, P
    Entian, KD
    Rieger, M
    Schaeffer, M
    Funk, B
    Mueller-Auer, S
    Silvey, M
    James, R
    Montfort, A
    Pons, A
    Puigdomenech, P
    Douka, A
    Voukelatou, E
    Milioni, D
    Hatzopoulos, P
    Piravandi, E
    Obermaier, B
    [J]. NATURE, 1998, 391 (6666) : 485 - 488
  • [5] BLAST: a more efficient report with usability improvements
    Boratyn, Grzegorz M.
    Camacho, Christiam
    Cooper, Peter S.
    Coulouris, George
    Fong, Amelia
    Ma, Ning
    Madden, Thomas L.
    Matten, Wayne T.
    McGinnis, Scott D.
    Merezhuk, Yuri
    Raytselis, Yan
    Sayers, Eric W.
    Tao, Tao
    Ye, Jian
    Zaretskaya, Irena
    [J]. NUCLEIC ACIDS RESEARCH, 2013, 41 (W1) : W29 - W33
  • [6] Measuring rank robustness in scored protein interaction networks
    Bozhilova, Lyuba, V
    Whitmore, Alan, V
    Wray, Jonny
    Reinert, Gesine
    Deane, Charlotte M.
    [J]. BMC BIOINFORMATICS, 2019, 20 (01)
  • [7] The Gene Ontology Resource: 20 years and still GOing strong
    Carbon, S.
    Douglass, E.
    Dunn, N.
    Good, B.
    Harris, N. L.
    Lewis, S. E.
    Mungall, C. J.
    Basu, S.
    Chisholm, R. L.
    Dodson, R. J.
    Hartline, E.
    Fey, P.
    Thomas, P. D.
    Albou, L. P.
    Ebert, D.
    Kesling, M. J.
    Mi, H.
    Muruganujian, A.
    Huang, X.
    Poudel, S.
    Mushayahama, T.
    Hu, J. C.
    LaBonte, S. A.
    Siegele, D. A.
    Antonazzo, G.
    Attrill, H.
    Brown, N. H.
    Fexova, S.
    Garapati, P.
    Jones, T. E. M.
    Marygold, S. J.
    Millburn, G. H.
    Rey, A. J.
    Trovisco, V.
    dos Santos, G.
    Emmert, D. B.
    Falls, K.
    Zhou, P.
    Goodman, J. L.
    Strelets, V. B.
    Thurmond, J.
    Courtot, M.
    Osumi-Sutherland, D.
    Parkinson, H.
    Roncaglia, P.
    Acencio, M. L.
    Kuiper, M.
    Laegreid, A.
    Logie, C.
    Lovering, R. C.
    [J]. NUCLEIC ACIDS RESEARCH, 2019, 47 (D1) : D330 - D338
  • [8] Meristematic Connectome: A Cellular Coordinator of Plant Responses to Environmental Signals?
    Chiatante, Donato
    Montagnoli, Antonio
    Trupiano, Dalila
    Sferra, Gabriella
    Bryant, John
    Rost, Thomas L.
    Scippa, Gabriella S.
    [J]. CELLS, 2021, 10 (10)
  • [9] cytoHubba: identifying hub objects and sub-networks from complex interactome
    Chin, Chia-Hao
    Chen, Shu-Hwa
    Wu, Hsin-Hung
    Ho, Chin-Wen
    Ko, Ming-Tat
    Lin, Chung-Yen
    [J]. BMC SYSTEMS BIOLOGY, 2014, 8
  • [10] Rapid, Long-Distance Electrical and Calcium Signaling in Plants
    Choi, Won-Gyu
    Hilleary, Richard
    Swanson, Sarah J.
    Kim, Su-Hwa
    Gilroy, Simon
    [J]. ANNUAL REVIEW OF PLANT BIOLOGY, VOL 67, 2016, 67 : 287 - 307