Trajectory tracking and disturbance rejection control of random linear systems

被引:3
作者
Wang, Shitong [1 ]
Wu, Zhaojing [2 ]
Wu, Zheng-Guang [1 ,3 ]
机构
[1] Zhejiang Univ, Inst Cyber Syst & Control, Hangzhou 310027, Zhejiang, Peoples R China
[2] Yantai Univ, Sch Math & Informat Sci, Yantai 264005, Shandong, Peoples R China
[3] Chengdu Univ, Inst Adv Study, Chengdu 610106, Sichuan, Peoples R China
来源
JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS | 2022年 / 359卷 / 09期
关键词
INTERNAL-MODEL CONTROL; NONLINEAR-SYSTEMS; PRINCIPLE; DESIGN;
D O I
10.1016/j.jfranklin.2022.03.032
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A more general trajectory tracking and disturbance rejection problem for the random linear system is considered in this paper. The known structural properties of the reference and the disturbance signals motivate us to use the internal model principle, and the motion decomposition for the linear systems prompts us to utilize the superposition principle. Combining the spectral analysis method with the pole assignment algorithm, the stability and tracking property can be obtained. The simulation result demonstrates that all the closed-loop system is exponentially practically stable in the mean square (EpS-2-M), the tracking error can be regulated to an arbitrarily small constant by turning the parameters. (C) 2022 The Franklin Institute. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:4433 / 4448
页数:16
相关论文
共 43 条
  • [1] Two-time-scale adaptive internal model designs for motion coordination
    Bai, He
    [J]. AUTOMATICA, 2016, 73 : 289 - 295
  • [2] Chen C. T., 1984, LINEAR SYSTEM THEORY
  • [3] Output feedback tracking control of stochastic Lagrangian systems and its application
    Cui, Ming-Yue
    Wu, Zhao-Jing
    Xi, Xue-Jun
    [J]. AUTOMATICA, 2014, 50 (05) : 1424 - 1433
  • [4] Dynamics Modeling and Tracking Control of Robot Manipulators in Random Vibration Environment
    Cui, Ming-Yue
    Xie, Xue-Jun
    Wu, Zhao-Jing
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2013, 58 (06) : 1540 - 1545
  • [5] Datta A., 1998, Adaptive Internal Model Control
  • [6] INTERNAL MODEL CONTROL .6. MULTILOOP DESIGN
    ECONOMOU, CG
    MORARI, M
    [J]. INDUSTRIAL & ENGINEERING CHEMISTRY PROCESS DESIGN AND DEVELOPMENT, 1986, 25 (02): : 411 - 419
  • [7] INTERNAL MODEL CONTROL .5. EXTENSION TO NONLINEAR-SYSTEMS
    ECONOMOU, CG
    MORARI, M
    PALSSON, BO
    [J]. INDUSTRIAL & ENGINEERING CHEMISTRY PROCESS DESIGN AND DEVELOPMENT, 1986, 25 (02): : 403 - 411
  • [8] INTERNAL MODEL PRINCIPLE OF CONTROL-THEORY
    FRANCIS, BA
    WONHAM, WM
    [J]. AUTOMATICA, 1976, 12 (05) : 457 - 465
  • [9] INTERNAL MODEL PRINCIPLE FOR LINEAR-MULTIVARIABLE REGULATORS
    FRANCIS, BA
    WONHAM, WM
    [J]. APPLIED MATHEMATICS AND OPTIMIZATION, 1975, 2 (02) : 170 - 194
  • [10] Robust Trajectory Tracking for a Class of Hybrid Systems: An Internal Model Principle Approach
    Galeani, Sergio
    Menini, Laura
    Potini, Alessandro
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2012, 57 (02) : 344 - 359