Approximate solution of periodic Riemann boundary value problem for analytic functions

被引:1
|
作者
Begehr, H
Li, X
机构
[1] Free Univ Berlin, Inst Math 1, D-14195 Berlin, Germany
[2] Ningxia Univ, Dept Math, Ningxia, Peoples R China
关键词
boundary value problem; singular integral; spline; approximation;
D O I
10.1016/S0377-0427(00)00530-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A direct method for the approximate solution of periodic Riemann boundary value problems for analytic functions is given through the approximation by complex splines. By the delta -cardinal splines of the first degree we get the approximation of the canonical function based on the approximate result of singular integrals with Hilbert kernel. Furthermore, we obtain the approximate solution which may be sufficiently close to the exact solution to any degree when the partition Delta is sufficiently fine. (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:85 / 93
页数:9
相关论文
共 50 条
  • [1] The boundary value problem for discrete analytic functions
    Skopenkov, M.
    ADVANCES IN MATHEMATICS, 2013, 240 : 61 - 87
  • [2] Riemann boundary value problem for harmonic functions in Clifford analysis
    Gu Longfei
    Zhang Zhongxiang
    MATHEMATISCHE NACHRICHTEN, 2014, 287 (8-9) : 1001 - 1012
  • [3] INTERPOLATING FUNCTIONAL POLYNOMIAL FOR THE APPROXIMATE SOLUTION OF THE BOUNDARY VALUE PROBLEM
    Makarov, Volodymyr
    Demkiv, Igor
    JOURNAL OF NUMERICAL AND APPLIED MATHEMATICS, 2014, 2 (116): : 63 - 67
  • [4] On one solution of a periodic boundary value problem for a hyperbolic equations
    Tokmagambetova, T. D.
    Orumbayeva, N. T.
    BULLETIN OF THE KARAGANDA UNIVERSITY-MATHEMATICS, 2023, 109 (01): : 141 - 155
  • [5] APPROXIMATE SOLUTION OF BOUNDARY VALUE PROBLEM FOR HYPERBOLIC EQUATION WITH FREDHOLM INTEGRAL OPERATOR
    Abdyldaeva, E. F.
    Kerimbekov, A.
    PROCEEDINGS OF THE 6TH INTERNATIONAL CONFERENCE ON CONTROL AND OPTIMIZATION WITH INDUSTRIAL APPLICATIONS, VOL II, 2018, : 23 - 25
  • [6] The Riemann problem on a ray for generalized analytic functions with a singular line
    Shabalin, P. L.
    Faizov, R. R.
    IZVESTIYA OF SARATOV UNIVERSITY MATHEMATICS MECHANICS INFORMATICS, 2023, 23 (01): : 58 - 69
  • [7] A Subdivision Approach to the Approximate Solution of 3rd Order Boundary Value Problem
    Manan, S. A.
    Ghaffar, A.
    Rizwan, M.
    Rahman, G.
    Kanwal, G.
    COMMUNICATIONS IN MATHEMATICS AND APPLICATIONS, 2018, 9 (04): : 499 - 512
  • [8] Numerical Solution for the Extrapolation Problem of Analytic Functions
    Bakas, Nikolaos P.
    RESEARCH, 2019, 2019
  • [9] A second order periodic boundary value problem with a parameter and vanishing Green's functions
    Li, Hong-Xu
    Zhang, Yang-Wen
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2014, 85 (3-4): : 273 - 283
  • [10] Notes on a boundary value problem with a periodic nonlinearity
    Feng, Zonghong
    Li, Fengying
    Liu, Jianxing
    OPTIK, 2018, 156 : 439 - 446