Tritium transport model at the minimal functional unit level for HCLL and WCLL breeding blankets of DEMO

被引:14
作者
Candido, Luigi [1 ]
Testoni, Raffaella [1 ]
Utili, Marco [2 ]
Zucchetti, Massimo [1 ]
机构
[1] Politecn Torino, Dipartimento Energia, Corso Duca Abruzzi 24, Turin, Italy
[2] ENEA UTIS CR Brasimone, Camugnano, BO, Italy
关键词
Tritium transport; Breeding blanket; HCLL; WCLL; DEMO; PERMEATION;
D O I
10.1016/j.fusengdes.2018.05.002
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
The Helium-Cooled Lithium-Lead (HCLL) and Water-Cooled Lithium-Lead (WCLL) Breeding Blankets are two of the four European blanket designs proposed for the DEMO reactor. A tritium transport model inside the blanket is fundamental to assess its preliminary design and safety features. Tritium transport and permeation are complex phenomena to be taken into account in the evaluation of the tritium balance, in order to guarantee tritium self-sufficiency and to characterise tritium concentrations, inventories and losses. In this context, the study has been performed at the minimal functional unit level of the outboard equatorial breeding blanket module, which is, during continuous operative conditions, one of the most loaded modules and this results in higher permeation phenomena. For these purposes, a 2D model for the breeder unit of HCLL and a 3D model for the single cell of WCLL breeding blanket concepts have been investigated. The models include advection-diffusion of tritium into the lead-lithium eutectic alloy, transfer of tritium from the liquid interface towards the steel, diffusion of tritium inside the steel, transfer of tritium from the steel towards the coolant, and advection-diffusion of diatomic tritium into the coolant. Thermal field, tritium generation rate profile, velocity field of lead-lithium and coolant have been also taken into account.
引用
收藏
页码:1327 / 1331
页数:5
相关论文
共 25 条
[1]  
Aubert J., 2016, INTEGRATION HCLL DDD
[2]   Mathematical models for tritium permeation analysis in liquid metal flows with helium bubbles [J].
Batet, L. ;
de Les Valls, E. Mas ;
Sedano, L. A. .
FUSION ENGINEERING AND DESIGN, 2014, 89 (7-8) :1158-1162
[3]   Tritium transport in HCLL and WCLL DEMO blankets [J].
Candido, Luigi ;
Utili, Marco ;
Nicolotti, Iuri ;
Zucchetti, Massimo .
FUSION ENGINEERING AND DESIGN, 2016, 109 :248-254
[4]   Tritium Behavior in HCPB Breeder Blanket Unit: Modeling and Experiments [J].
Carella, E. ;
Moreno, C. ;
Urgorri, F. R. ;
Demange, D. ;
Castellanos, J. ;
Rapisarda, D. .
FUSION SCIENCE AND TECHNOLOGY, 2017, 71 (03) :357-362
[5]  
Chapman S., 1970, MATH THEORY NONUNIFO, V3, DOI DOI 10.1119/1.1942035
[6]   WCLL breeding blanket design and integration for DEMO 2015: status and perspectives [J].
Del Nevo, A. ;
Martelli, E. ;
Agostini, P. ;
Arena, P. ;
Bongiovi, G. ;
Caruso, G. ;
Di Gironimo, G. ;
Di Maio, P. A. ;
Eboli, M. ;
Giammusso, R. ;
Giannetti, F. ;
Giovinazzi, A. ;
Mariano, G. ;
Moro, F. ;
Mozzillo, R. ;
Tassone, A. ;
Rozzia, D. ;
Tarallo, A. ;
Tarantino, M. ;
Utili, M. ;
Villari, R. .
FUSION ENGINEERING AND DESIGN, 2017, 124 :682-686
[7]  
Del Nevo A., 2016, INTEGRATION WCLL WCL
[8]   Neutronics requirements for a DEMO fusion power plant [J].
Fischer, U. ;
Bachmann, C. ;
Palermo, I. ;
Pereslavtsev, P. ;
Villari, R. .
FUSION ENGINEERING AND DESIGN, 2015, 98-99 :2134-2137
[9]  
Fradera J., 2011, THESIS
[10]   Tritium transport analysis in HCPB DEMO blanket with the FUS-TPC code [J].
Franza, F. ;
Boccaccini, L. V. ;
Ciampichetti, A. ;
Zucchetti, M. .
FUSION ENGINEERING AND DESIGN, 2013, 88 (9-10) :2444-2447