WEAK SECOND ORDER EXPLICIT EXPONENTIAL RUNGE-KUTTA METHODS FOR STOCHASTIC DIFFERENTIAL EQUATIONS

被引:17
作者
Komori, Yoshio [1 ]
Cohen, David [2 ,3 ]
Burrage, Kevin [4 ]
机构
[1] Kyushu Inst Technol, Dept Syst Design & Informat, 680-4 Kawazu, Iizuka, Fukuoka 8208502, Japan
[2] Umea Univ, Dept Math & Math Stat, SE-90187 Umea, Sweden
[3] Univ Innsbruck, Dept Math, A-6020 Innsbruck, Austria
[4] QUT, ARC Ctr Excellence Math & Stat Frontiers, Sch Math, Brisbane, Qld, Australia
关键词
explicit method; exponential integrator; splitting method; stiffness; noncommutative noise; Ito stochastic differential equation; S-ROCK METHODS; MEAN-SQUARE STABILITY; CHEBYSHEV METHODS; STIFF; INTEGRATORS; APPROXIMATION; SYSTEMS;
D O I
10.1137/15M1041341
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We propose new explicit exponential Runge-Kutta methods for the weak approximation of solutions of stiff Ito stochastic differential equations (SDEs). We also consider the use of exponential Runge Kutta methods in combination with splitting methods. These methods have weak order 2 for multidimensional, noncommutative SDEs with a semilinear drift term, whereas they are of order 2 or 3 for semilinear ordinary differential equations. These methods are A-stable in the mean square sense for a scalar linear test equation whose drift and diffusion terms have complex coefficients. We carry out numerical experiments to compare the performance of these methods with an existing explicit stabilized method of weak order 2.
引用
收藏
页码:A2857 / A2878
页数:22
相关论文
共 38 条
[1]   Mean-square A-stable diagonally drift-implicit integrators of weak second order for stiff It stochastic differential equations Mean-square A-stable diagonally drift-implicit integrators of weak [J].
Abdulle, A. ;
Vilmart, G. ;
Zygalakis, K. C. .
BIT NUMERICAL MATHEMATICS, 2013, 53 (04) :827-840
[2]   Second order Chebyshev methods based on orthogonal polynomials [J].
Abdulle, A ;
Medovikov, AA .
NUMERISCHE MATHEMATIK, 2001, 90 (01) :1-18
[3]   WEAK SECOND ORDER EXPLICIT STABILIZED METHODS FOR STIFF STOCHASTIC DIFFERENTIAL EQUATIONS [J].
Abdulle, Assyr ;
Vilmart, Gilles ;
Zygalakis, Konstantinos C. .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2013, 35 (04) :A1792-A1814
[4]   S-ROCK: Chebyshev methods for stiff stochastic differential equations [J].
Abdulle, Assyr ;
Cirilli, Stephane .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2008, 30 (02) :997-1014
[5]  
Abdulle A, 2008, COMMUN MATH SCI, V6, P845
[6]  
Adamu I. A., 2011, THESIS
[7]  
Arnold L., 1974, Stochastic Differential Equations: Theory and Applications
[8]   A structural analysis of asymptotic mean-square stability for multi-dimensional linear stochastic differential systems [J].
Buckwar, Evelyn ;
Sickenberger, Thorsten .
APPLIED NUMERICAL MATHEMATICS, 2012, 62 (07) :842-859
[9]   Convergence analysis of trigonometric methods for stiff second-order stochastic differential equations [J].
Cohen, David ;
Sigg, Magdalena .
NUMERISCHE MATHEMATIK, 2012, 121 (01) :1-29
[10]  
Da Prato G., 1995, Stoch. Stoch. Rep, V52, P29, DOI [10.1080/17442509508833962, DOI 10.1080/17442509508833962]