Effective Zeeman splitting in bent lateral heterojunctions of graphene and hexagonal boron nitride: A new mechanism towards half-metallicity

被引:18
作者
Yue, Ling [1 ,2 ]
Seifert, Gotthard [3 ]
Chang, Kai [4 ]
Zhang, Dong-Bo [2 ]
机构
[1] Xi An Jiao Tong Univ, Sch Sci, Xian 710049, Shaanxi, Peoples R China
[2] Beijing Computat Sci Res Ctr, Beijing 100193, Peoples R China
[3] Tech Univ Dresden, Phys Chem, D-01062 Dresden, Germany
[4] Chinese Acad Sci, SKLSM, Inst Semicond, POB 912, Beijing 100083, Peoples R China
基金
中国国家自然科学基金;
关键词
AUGMENTED-WAVE METHOD; MONOLAYER GRAPHENE; HETEROSTRUCTURES; ELECTRONICS; INTERFACE;
D O I
10.1103/PhysRevB.96.201403
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Low-dimensional half-metallic (HM) systems are invaluable for future spintronics. Yet a definitive experimental demonstration of HM characteristic in two-dimensional (2D) materials remains elusive. Here, we reveal that in recently synthesized graphene/hexagonal boron nitride (G/hBN) lateral heterojunctions, pronounced HM can be achieved by applying an in-plane bending. We demonstrate with generalized Bloch theorem that bending has strong influence on interfacial spin states, mimicking the Zeeman effect, which consequently leads to the desired HM phase with a sizable HM gap and excellent magnetic stability. Given recent experimental advances in fabrication of G/hBN heterostructures, this strain-driven HM phase may be practically accessible. The generalized Bloch theorem coupled with self-consistent charge density-functional tight binding is useful to model 2D structures under fundamental deformations, thus may boost the study of strain tunable electronic property of low-dimensional materials with inhomogeneous strain patterns.
引用
收藏
页数:5
相关论文
共 45 条
[1]   Two-dimensional flexible nanoelectronics [J].
Akinwande, Deji ;
Petrone, Nicholas ;
Hone, James .
NATURE COMMUNICATIONS, 2014, 5
[2]   Nanocrystalline nanowires: III. Electrons [J].
Allen, Philip B. .
NANO LETTERS, 2007, 7 (05) :1220-1223
[3]   DFTB+, a sparse matrix-based implementation of the DFTB method [J].
Aradi, B. ;
Hourahine, B. ;
Frauenheim, Th. .
JOURNAL OF PHYSICAL CHEMISTRY A, 2007, 111 (26) :5678-5684
[4]   Stretching and Breaking of Ultrathin MoS2 [J].
Bertolazzi, Simone ;
Brivio, Jacopo ;
Kis, Andras .
ACS NANO, 2011, 5 (12) :9703-9709
[5]   Quantum Dots and Nanoroads of Graphene Embedded in Hexagonal Boron Nitride [J].
Bhowrnick, Somnath ;
Singh, Abhishek K. ;
Yakobson, Boris I. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2011, 115 (20) :9889-9893
[6]   PROJECTOR AUGMENTED-WAVE METHOD [J].
BLOCHL, PE .
PHYSICAL REVIEW B, 1994, 50 (24) :17953-17979
[7]   The electronic properties of graphene [J].
Castro Neto, A. H. ;
Guinea, F. ;
Peres, N. M. R. ;
Novoselov, K. S. ;
Geim, A. K. .
REVIEWS OF MODERN PHYSICS, 2009, 81 (01) :109-162
[8]   Quantum Spin Hall Effect in Two-Dimensional Crystals of Transition-Metal Dichalcogenides [J].
Cazalilla, M. A. ;
Ochoa, H. ;
Guinea, F. .
PHYSICAL REVIEW LETTERS, 2014, 113 (07)
[9]   Electronic States at the Graphene-Hexagonal Boron Nitride Zigzag Interface [J].
Drost, Robert ;
Uppstu, Andreas ;
Schulz, Fabian ;
Hamalainen, Sampsa K. ;
Ervasti, Mikko ;
Harju, Ari ;
Liljeroth, Peter .
NANO LETTERS, 2014, 14 (09) :5128-5132
[10]   Self-consistent-charge density-functional tight-binding method for simulations of complex materials properties [J].
Elstner, M ;
Porezag, D ;
Jungnickel, G ;
Elsner, J ;
Haugk, M ;
Frauenheim, T ;
Suhai, S ;
Seifert, G .
PHYSICAL REVIEW B, 1998, 58 (11) :7260-7268