On automorphisms of some d-dimensional dual hyperovals in PG(d(d+3)/2, 2)

被引:2
|
作者
Taniguchi, Hiroaki [1 ]
机构
[1] Takuma Natl Coll Technol, Kagawa 7691192, Japan
关键词
dual hyperoval;
D O I
10.1007/s00373-008-0781-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In [3], a new d-dimensional dual hyperoval S in PG(d(d + 3)/2, 2) for d >= 3 was constructed based on Veronesean dual hyperoval. In this note, we determine the automorphism group of the dual hyperoval S.
引用
收藏
页码:229 / 236
页数:8
相关论文
共 50 条
  • [31] Invariants of Automorphisms of the d-Dimensional Tori as a Criterion of Commensurability and Incommensurability of Crystal Structures
    Warczewski, J.
    Gusin, P.
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2000, 56 : S176 - S176
  • [32] A d-Dimensional Stress Tensor for Minkd+2 Gravity
    Center for Fundamental Laws of Nature, Harvard University, Cambridge
    MA
    02138, United States
    不详
    NJ
    08540, United States
    arXiv, 1600,
  • [33] A d-dimensional stress tensor for Minkd+2 gravity
    Daniel Kapec
    Prahar Mitra
    Journal of High Energy Physics, 2018
  • [34] On the Linear Separability of Random Points in the d-dimensional Spherical Layer and in the d-dimensional Cube
    Sidorov, S. V.
    Zolotykh, N. Yu.
    2019 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2019,
  • [35] A d-dimensional stress tensor for Minkd+2 gravity
    Kapec, Daniel
    Mitra, Prahar
    JOURNAL OF HIGH ENERGY PHYSICS, 2018, (05):
  • [36] CANONICAL QUANTIZATION OF D-DIMENSIONAL R2 GRAVITY
    BUKHBINDER, IL
    KARATAEVA, IY
    LYAKHOVICH, SL
    THEORETICAL AND MATHEMATICAL PHYSICS, 1991, 87 (01) : 432 - 441
  • [37] NUMBER OF NEIGHBORLY D-POLYTOPES WITH D+3 VERTICES
    MCMULLEN, P
    MATHEMATIKA, 1974, 21 (41) : 26 - 31
  • [38] Representing simple d-dimensional polytopes by d polynomials
    Averkov, Gennadiy
    Henk, Martin
    MATHEMATICAL PROGRAMMING, 2011, 126 (02) : 203 - 230
  • [39] D-DIMENSIONAL (D-GREATER-THAN-OR-EQUAL-TO-3) SHUFFLE INTERCONNECTIONS
    GIGLMAYR, J
    APPLIED OPTICS, 1992, 31 (11): : 1695 - 1708
  • [40] Representing simple d-dimensional polytopes by d polynomials
    Gennadiy Averkov
    Martin Henk
    Mathematical Programming, 2011, 126 : 203 - 230