Conformational substates modulate hydride transfer in dihydrofolate reductase

被引:64
作者
Thorpe, IF [1 ]
Brooks, CL [1 ]
机构
[1] Scripps Res Inst, Dept Mol Biol, La Jolla, CA 92037 USA
关键词
D O I
10.1021/ja053558l
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In earlier studies of the hydride-transfer reaction catalyzed by dihydrofolate reductase (DHFR) we identified features of the protein correlated with variations in the reaction barrier. We extend the scope of those studies by carrying out potential of mean force (PMF) simulations to determine the hydride-transfer barrier in the wild-type protein as well as the 6121 V and 6121 S mutants. While our prior studies focused on the reactant state, our current work addresses the full reaction pathway and directly probes the reactive event. The free energy barriers and structural ensembles resulting from these PMF calculations exhibit the same trends reported in our previous work. Fluctuations present in these simulations also exhibit trends associated with differences in the hydride-transfer barrier height. Moreover, vibrational modes anticipated to promote hydride transfer exhibit larger amplitudes in simulations that generate lowered barriers. The results of our study indicate that discrete basins (substates) on a potential energy landscape of the enzyme give rise to distinct hydride-transfer barriers. We suggest that the long-range effects of mutations at position 121 within DHFR are mediated by differentially preorganized protein environments in the context of distinct substate distributions, with concomitant changes to the dynamic properties of the enzyme.
引用
收藏
页码:12997 / 13006
页数:10
相关论文
共 73 条
[1]   Nuclear quantum effects and enzyme dynamics in dihydrofolate reductase catalysis [J].
Agarwal, PK ;
Billeter, SR ;
Hammes-Schiffer, S .
JOURNAL OF PHYSICAL CHEMISTRY B, 2002, 106 (12) :3283-3293
[2]   Network of coupled promoting motions in enzyme catalysis [J].
Agarwal, PK ;
Billeter, SR ;
Rajagopalan, PTR ;
Benkovic, SJ ;
Hammes-Schiffer, S .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (05) :2794-2799
[3]   Quantum dynamics of hydride transfer in enzyme catalysis [J].
Alhambra, C ;
Corchado, JC ;
Sánchez, ML ;
Gao, JL ;
Truhlar, DG .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2000, 122 (34) :8197-8203
[4]   Barrier passage and protein dynamics in enzymatically catalyzed reactions [J].
Antoniou, D ;
Caratzoulas, S ;
Kalyanaraman, C ;
Mincer, JS ;
Schwartz, SD .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 2002, 269 (13) :3103-3112
[5]   Donor-acceptor distance and protein promoting vibration coupling to hydride transfer: A possible mechanism for kinetic control in isozymes of human lactate dehydrogenase [J].
Basner, JE ;
Schwartz, SD .
JOURNAL OF PHYSICAL CHEMISTRY B, 2004, 108 (01) :444-451
[6]   Identification and energetic ranking of possible docking sites for pterin on dihydrofolate reductase [J].
Bliznyuk, AA ;
Gready, JE .
JOURNAL OF COMPUTER-AIDED MOLECULAR DESIGN, 1998, 12 (04) :325-333
[7]  
Braxenthaler M, 1997, PROTEINS, V29, P417, DOI 10.1002/(SICI)1097-0134(199712)29:4<417::AID-PROT2>3.0.CO
[8]  
2-5
[9]   HARMONIC-ANALYSIS OF LARGE SYSTEMS .1. METHODOLOGY [J].
BROOKS, BR ;
JANEZIC, D ;
KARPLUS, M .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 1995, 16 (12) :1522-1542
[10]  
Brooks C. L., 1988, PROTEINS THEORETICAL