Sparse Grid Regression for Performance Prediction Using High-Dimensional Run Time Data

被引:1
作者
Neumann, Philipp [1 ,2 ,3 ]
机构
[1] Univ Hamburg, Bundesstr 45a, D-20146 Hamburg, Germany
[2] Deutsch Klimarechenzentrum, Bundesstr 45a, D-20146 Hamburg, Germany
[3] Helmut Schmidt Univ, Holstenhofweg 85, D-22043 Hamburg, Germany
来源
EURO-PAR 2019: PARALLEL PROCESSING WORKSHOPS | 2020年 / 11997卷
关键词
Performance modeling; Sparse grids; Regression;
D O I
10.1007/978-3-030-48340-1_46
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
We employ sparse grid regression to predict the run time in three types of numerical simulation: molecular dynamics (MD), weather and climate simulation. The impact of algorithmic, OpenMP/MPI and hardware-aware optimization parameters on performance is studied. We show that normalization of run time data via algorithmic complexity arguments significantly improves prediction accuracy. Mean relative prediction errors are in the range of few percent; in MD, a five-dimensional parameter space exploration results in mean relative prediction errors of ca. 15% using ca. 178 run time samples.
引用
收藏
页码:601 / 612
页数:12
相关论文
共 50 条