Sparse Grid Regression for Performance Prediction Using High-Dimensional Run Time Data

被引:1
|
作者
Neumann, Philipp [1 ,2 ,3 ]
机构
[1] Univ Hamburg, Bundesstr 45a, D-20146 Hamburg, Germany
[2] Deutsch Klimarechenzentrum, Bundesstr 45a, D-20146 Hamburg, Germany
[3] Helmut Schmidt Univ, Holstenhofweg 85, D-22043 Hamburg, Germany
来源
EURO-PAR 2019: PARALLEL PROCESSING WORKSHOPS | 2020年 / 11997卷
关键词
Performance modeling; Sparse grids; Regression;
D O I
10.1007/978-3-030-48340-1_46
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
We employ sparse grid regression to predict the run time in three types of numerical simulation: molecular dynamics (MD), weather and climate simulation. The impact of algorithmic, OpenMP/MPI and hardware-aware optimization parameters on performance is studied. We show that normalization of run time data via algorithmic complexity arguments significantly improves prediction accuracy. Mean relative prediction errors are in the range of few percent; in MD, a five-dimensional parameter space exploration results in mean relative prediction errors of ca. 15% using ca. 178 run time samples.
引用
收藏
页码:601 / 612
页数:12
相关论文
共 50 条
  • [1] Empirical Priors for Prediction in Sparse High-dimensional Linear Regression
    Martin, Ryan
    Tang, Yiqi
    JOURNAL OF MACHINE LEARNING RESEARCH, 2020, 21
  • [2] Empirical priors for prediction in sparse high-dimensional linear regression
    Martin, Ryan
    Tang, Yiqi
    Journal of Machine Learning Research, 2020, 21
  • [3] Sparse High-Dimensional Isotonic Regression
    Gamarnik, David
    Gaudio, Julia
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32
  • [4] Performance Comparison of Penalized Regression Methods in Poisson Regression under High-Dimensional Sparse Data with Multicollinearity
    Choosawat, Chutikarn
    Reangsephet, Orawan
    Srisuradetchai, Patchanok
    Lisawadi, Supranee
    THAILAND STATISTICIAN, 2020, 18 (03): : 306 - 318
  • [5] High-dimensional sparse vine copula regression with application to genomic prediction
    Sahin, Oezge
    Czado, Claudia
    BIOMETRICS, 2024, 80 (01)
  • [6] Online sparse sliced inverse regression for high-dimensional streaming data
    Xu, Jianjun
    Cui, Wenquan
    Cheng, Haoyang
    INTERNATIONAL JOURNAL OF WAVELETS MULTIRESOLUTION AND INFORMATION PROCESSING, 2023, 21 (02)
  • [7] High-Dimensional Classification by Sparse Logistic Regression
    Abramovich, Felix
    Grinshtein, Vadim
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2019, 65 (05) : 3068 - 3079
  • [8] High-Dimensional Sparse Additive Hazards Regression
    Lin, Wei
    Lv, Jinchi
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2013, 108 (501) : 247 - 264
  • [9] ON THE PERFORMANCE OF KERNEL ESTIMATORS FOR HIGH-DIMENSIONAL, SPARSE BINARY DATA
    GRUND, B
    HALL, P
    JOURNAL OF MULTIVARIATE ANALYSIS, 1993, 44 (02) : 321 - 344
  • [10] On the anonymization of sparse high-dimensional data
    Ghinita, Gabriel
    Tao, Yufei
    Kalnis, Panos
    2008 IEEE 24TH INTERNATIONAL CONFERENCE ON DATA ENGINEERING, VOLS 1-3, 2008, : 715 - +