Elucidating the Energetics of Entropically Driven Protein-Ligand Association: Calculations of Absolute Binding Free Energy and Entropy

被引:42
作者
Deng, Nan-jie [1 ,2 ]
Zhang, Peng [3 ]
Cieplak, Piotr [4 ]
Lai, Luhua [3 ]
机构
[1] Rutgers State Univ, BioMaPS Inst Quantitat Biol, Piscataway, NJ 08854 USA
[2] Rutgers State Univ, Dept Chem & Chem Biol, Piscataway, NJ 08854 USA
[3] Peking Univ, Coll Chem & Mol Engn, State Key Lab Struct Chem Unstable & Stable Speci, BNLMS, Beijing 100871, Peoples R China
[4] Sanford Burnham Med Res Inst, La Jolla, CA 92037 USA
关键词
HUMAN-IMMUNODEFICIENCY-VIRUS; MOLECULAR-DYNAMICS SIMULATIONS; HIV-1; PROTEASE; DRUG DESIGN; COMPUTER-SIMULATIONS; ACCURATE PREDICTION; STRUCTURAL BIOLOGY; EXPLICIT SOLVENT; WATER-MOLECULES; INHIBITORS;
D O I
10.1021/jp204047b
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The binding of proteins and ligands is generally associated with the loss of translational, rotational, and conformational entropy. In many cases, however, the net entropy change due to binding is positive. To develop a deeper understanding of the energetics of entropically driven protein-ligand binding, we calculated the absolute binding free energies and binding entropies for two HIV-1 protease inhibitors Nelfinavir and Amprenavir using the double-decoupling method with molecular dynamics simulations in explicit solvent. For both ligands, the calculated absolute binding free energies are in general agreement with experiments. The statistical error in the computed Delta G(bind) due to convergence problem is estimated to be >= 2 kcal/mol. The decomposition of free energies indicates that, although the binding of Nelfinavir is driven by nonpolar interaction, Amprenavir binding benefits from both nonpolar and electrostatic interactions. The calculated absolute binding entropies show that (1) Nelfinavir binding is driven by large entropy change and (2) the entropy of Amprenavir binding is much less favorable compared with that of Nelfinavir. Both results are consistent with experiments. To obtain qualitative insights into the entropic effects, we decomposed the absolute binding entropy into different contributions based on the temperature dependence of free energies along different legs of the thermodynamic pathway. The results suggest that the favorable entropic contribution to binding is dominated by the ligand desolvation entropy. The entropy gain due to solvent release from binding site appears to be more than offset by the reduction of rotational and vibrational entropies upon binding.
引用
收藏
页码:11902 / 11910
页数:9
相关论文
共 50 条
  • [1] Absolute binding free energy calculations: On the accuracy of computational scoring of protein-ligand interactions
    Singh, Nidhi
    Warshel, Arieh
    PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2010, 78 (07) : 1705 - 1723
  • [2] Free energy calculations of protein-ligand interactions
    de Ruiter, Anita
    Oostenbrink, Chris
    CURRENT OPINION IN CHEMICAL BIOLOGY, 2011, 15 (04) : 547 - 552
  • [3] Enhanced Ligand Sampling for Relative Protein-Ligand Binding Free Energy Calculations
    Kaus, Joseph W.
    McCammon, J. Andrew
    JOURNAL OF PHYSICAL CHEMISTRY B, 2015, 119 (20) : 6190 - 6197
  • [4] Molecular modelling and free-energy calculations of protein-ligand binding
    Luzhkov, Viktor B.
    RUSSIAN CHEMICAL REVIEWS, 2017, 86 (03) : 211 - 230
  • [5] Accounting for the Central Role of Interfacial Water in Protein-Ligand Binding Free Energy Calculations
    Ben-Shalom, Ido Y.
    Lin, Zhixiong
    Radak, Brian K.
    Lin, Charles
    Sherman, Woody
    Gilson, Michael K.
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2020, 16 (12) : 7883 - 7894
  • [6] Enhancing Hit Discovery in Virtual Screening through Absolute Protein-Ligand Binding Free-Energy Calculations
    Chen, Wei
    Cui, Di
    Jerome, Steven V.
    Michino, Mayako
    Lenselink, Eelke B.
    Huggins, David J.
    Beautrait, Alexandre
    Vendome, Jeremie
    Abel, Robert
    Friesner, Richard A.
    Wang, Lingle
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2023, 63 (10) : 3171 - 3185
  • [7] On Restraints in End-Point Protein-Ligand Binding Free Energy Calculations
    Menzer, William M.
    Xie, Bing
    Minh, David D. L.
    JOURNAL OF COMPUTATIONAL CHEMISTRY, 2020, 41 (06) : 573 - 586
  • [8] Cluster Hydration Model for Binding Energy Calculations of Protein-Ligand Complexes
    Murata, Katsumi
    Fedorov, Dmitri G.
    Nakanishi, Isao
    Kitaura, Kazuo
    JOURNAL OF PHYSICAL CHEMISTRY B, 2009, 113 (03) : 809 - 817
  • [9] Improving the Efficiency of Protein-Ligand Binding Free-Energy Calculations by System Truncation
    Genheden, Samuel
    Ryde, Ulf
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2012, 8 (04) : 1449 - 1458
  • [10] Predictions of Ligand Selectivity from Absolute Binding Free Energy Calculations
    Aldeghi, Matteo
    Heifetz, Alexander
    Bodkin, Michael J.
    Knapp, Stefan
    Biggin, Philip C.
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2017, 139 (02) : 946 - 957