Existence and uniqueness of strictly nondecreasing and positive solution for a fractional three-point boundary value problem

被引:47
作者
Liang, Sihua [1 ]
Zhang, Jihui [2 ]
机构
[1] Changchun Normal Univ, Coll Math, Changchun 130032, Jilin, Peoples R China
[2] Nanjing Normal Univ, Inst Math, Sch Math Sci, Nanjing 210046, Jiangsu, Peoples R China
关键词
Partially ordered sets; Fixed point theorem; Positive solution; FIXED-POINT THEOREMS; DIFFERENTIAL-EQUATIONS;
D O I
10.1016/j.camwa.2011.03.073
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the following nonlinear fractional three-point boundary value problem D(0+)(alpha)u(t) + f(t, u(t)) = 0, 0 < t < 1, 3 < alpha <= 4, u(0) = u'(0) = u ''(0) = 0, u ''(1) = beta u ''(eta), where D-0+(alpha) is the standard Riemann-Liouville fractional derivative. By using a fixed point theorem in partially ordered sets, we obtain sufficient conditions for the existence and uniqueness of positive and nondecreasing solution to the above boundary value problem. Crown Copyright (C) 2011 Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:1333 / 1340
页数:8
相关论文
共 25 条
  • [11] Basic theory of fractional differential equations
    Lakshmikantham, V.
    Vatsala, A. S.
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2008, 69 (08) : 2677 - 2682
  • [12] General uniqueness and monotone iterative technique for fractional differential equations
    Lakshmikantham, V.
    Vatsala, A. S.
    [J]. APPLIED MATHEMATICS LETTERS, 2008, 21 (08) : 828 - 834
  • [13] Existence of positive solutions of the boundary value problem for nonlinear fractional differential equations
    Li, C. F.
    Luo, X. N.
    Zhou, Yong
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2010, 59 (03) : 1363 - 1375
  • [14] Positive solutions for boundary value problems of nonlinear fractional differential equation
    Liang, Sihua
    Zhang, Jihui
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (11) : 5545 - 5550
  • [15] Existence and Uniqueness of Positive and Nondecreasing Solutions for a Class of Singular Fractional Boundary Value Problems
    Mena, J. Caballero
    Harjani, J.
    Sadarangani, K.
    [J]. BOUNDARY VALUE PROBLEMS, 2009,
  • [16] Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations
    Nieto, JJ
    Rodríguez-López, R
    [J]. ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 2005, 22 (03): : 223 - 239
  • [17] Fixed point theorems in ordered abstract spaces
    Nieto, Juan J.
    Pouso, Rodrigo L.
    Rodriguez-Lopez, Rosana
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 135 (08) : 2505 - 2517
  • [18] Fixed point theorems for generalized contractions in ordered metric spaces
    O'Regan, Donal
    Petrusel, Adrian
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 341 (02) : 1241 - 1252
  • [19] Podlubny I., 1999, FRACTIONAL DIFFERENT
  • [20] Samko A. A., 1993, Fractional Integrals andDerivatives: Theory and Applications