Local adaptive shrinkage threshold denoising using curvelet coefficients

被引:14
作者
Bao, Q. Z. [1 ]
Gao, J. H. [1 ]
Chen, W. C. [1 ]
机构
[1] Xi An Jiao Tong Univ, Sch Elect & Informat Engn, Xian 710049, Peoples R China
关键词
Adaptive systems;
D O I
10.1049/el:20082831
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A new local adaptive shrinkage denoising approach based on neighbourhood windows and the scale of curvelet coefficients is presented. Mean filtering and median filtering according to the local characteristic of curvelet coefficients and noise level define the threshold function. Experimental results show that the proposed method outperforms the exiting curvelet shrinkage threshold method.
引用
收藏
页码:277 / 279
页数:3
相关论文
共 7 条
[1]   New tight frames of curvelets and optimal representations of objects with piecewise C2 singularities [J].
Candès, EJ ;
Donoho, DL .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2004, 57 (02) :219-266
[2]   Fast discrete curvelet transforms [J].
Candes, Emmanuel ;
Demanet, Laurent ;
Donoho, David ;
Ying, Lexing .
MULTISCALE MODELING & SIMULATION, 2006, 5 (03) :861-899
[3]  
Chen GY, 2005, INTEGR COMPUT-AID E, V12, P99
[4]  
Saevarsson BB, 2004, HELS UNIV TECHNOL S, V46, P117
[5]   Adaptive shrinkage de-noising using neighbourhood characteristic [J].
Shengqian, W ;
Yuanhua, Z ;
Daowen, Z .
ELECTRONICS LETTERS, 2002, 38 (11) :502-503
[6]   Gray and color image contrast enhancement by the curvelet transform [J].
Starck, JL ;
Murtagh, F ;
Candès, EJ ;
Donoho, DL .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2003, 12 (06) :706-717
[7]  
Starck JL, 2002, IEEE T IMAGE PROCESS, V11, P670, DOI [10.1109/TIP.2002.1014998, 10.1117/12.408568]