Assessing the Effectiveness of Multilingual Transformer-based Text Embeddings for Named Entity Recognition in Portuguese

被引:3
|
作者
de Lima Santos, Diego Bernardes [1 ]
de Carvalho Dutra, Frederico Giffoni [2 ]
Parreiras, Fernando Silva [3 ]
Brandao, Wladmir Cardoso [1 ]
机构
[1] Pontifical Catholic Univ Minas Gerais PUC Minas, Dept Comp Sci, Belo Horizonte, MG, Brazil
[2] Co Energet Minas Gerais CEMIG, Belo Horizonte, MG, Brazil
[3] FUMEC Univ, Lab Adv Informat Syst, Belo Horizonte, MG, Brazil
来源
PROCEEDINGS OF THE 23RD INTERNATIONAL CONFERENCE ON ENTERPRISE INFORMATION SYSTEMS (ICEIS 2021), VOL 1 | 2021年
关键词
Named Entity Recognition; Text Embedding; Neural Network; Transformer; Multilingual; Portuguese; MODELS;
D O I
10.5220/0010443204730483
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Recent state of the art named entity recognition approaches are based on deep neural networks that use an attention mechanism to learn how to perform the extraction of named entities from relevant fragments of text. Usually, training models in a specific language leads to effective recognition, but it requires a lot of time and computational resources. However, fine-tuning a pre-trained multilingual model can be simpler and faster, but there is a question on how effective that recognition model can be. This article exploits multilingual models for named entity recognition by adapting and training tranformer-based architectures for Portuguese, a challenging complex language. Experimental results show that multilingual trasformer-based text embeddings approaches fine tuned with a large dataset outperforms state of the art trasformer-based models trained specifically for Portuguese. In particular, we build a comprehensive dataset from different versions of HAREM to train our multilingual transformer-based text embedding approach, which achieves 88.0% of precision and 87.8% in F1 in named entity recognition for Portuguese, with gains of up to 9.89% of precision and 11.60% in F1 compared to the state of the art single-lingual approach trained specifically for Portuguese.
引用
收藏
页码:473 / 483
页数:11
相关论文
共 50 条
  • [21] A Multilingual Dataset for Named Entity Recognition, Entity Linking and Stance Detection in Historical Newspapers
    Hamdi, Ahmed
    Pontes, Elvys Linhares
    Boros, Emanuela
    Thi Tuyet Hai Nguyen
    Hackl, Guenter
    Moreno, Jose G.
    Doucet, Antoine
    SIGIR '21 - PROCEEDINGS OF THE 44TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, 2021, : 2328 - 2334
  • [22] Learning multilingual named entity recognition from Wikipedia
    Nothman, Joel
    Ringland, Nicky
    Radford, Will
    Murphy, Tara
    Curran, James R.
    ARTIFICIAL INTELLIGENCE, 2013, 194 : 151 - 175
  • [23] Exploiting Multiple Embeddings for Chinese Named Entity Recognition
    Xu, Canwen
    Wang, Feiyang
    Han, Jialong
    Li, Chenliang
    PROCEEDINGS OF THE 28TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT (CIKM '19), 2019, : 2269 - 2272
  • [24] Persian Automatic Text Summarization Based on Named Entity Recognition
    Khademi, Mohammad Ebrahim
    Fakhredanesh, Mohammad
    IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY-TRANSACTIONS OF ELECTRICAL ENGINEERING, 2020,
  • [25] Transformer-Based Multilingual Speech Emotion Recognition Using Data Augmentation and Feature Fusion
    Al-onazi, Badriyya B.
    Nauman, Muhammad Asif
    Jahangir, Rashid
    Malik, Muhmmad Mohsin
    Alkhammash, Eman H.
    Elshewey, Ahmed M.
    APPLIED SCIENCES-BASEL, 2022, 12 (18):
  • [26] Named Entity Recognition for Short Text Messages
    Ek, Tobias
    Kirkegaard, Camilla
    Jonsson, Hakan
    Nugues, Pierre
    COMPUTATIONAL LINGUISTICS AND RELATED FIELDS, 2011, 27 : 178 - 187
  • [27] Transformer-based end-to-end scene text recognition
    Zhu, Xinghao
    Zhang, Zhi
    PROCEEDINGS OF THE 2021 IEEE 16TH CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS (ICIEA 2021), 2021, : 1691 - 1695
  • [28] Named Entity Recognition for Sensitive Data Discovery in Portuguese
    Dias, Mariana
    Bone, Joao
    Ferreira, Joao C.
    Ribeiro, Ricardo
    Maia, Rui
    APPLIED SCIENCES-BASEL, 2020, 10 (07):
  • [29] Chemical Named Entity Recognition with Deep Contextualized Neural Embeddings
    Awan, Zainab
    Kahlke, Tim
    Ralph, Peter J.
    Kennedy, Paul J.
    KDIR: PROCEEDINGS OF THE 11TH INTERNATIONAL JOINT CONFERENCE ON KNOWLEDGE DISCOVERY, KNOWLEDGE ENGINEERING AND KNOWLEDGE MANAGEMENT - VOL 1: KDIR, 2019, : 135 - 144
  • [30] Shahmukhi named entity recognition by using contextualized word embeddings
    Tehseen, Amina
    Ehsan, Toqeer
    Bin Liaqat, Hannan
    Kong, Xiangjie
    Ali, Amjad
    Al-Fuqaha, Ala
    EXPERT SYSTEMS WITH APPLICATIONS, 2023, 229